
Object-Oriented Desgin Template Method Pattern

George Blankenship 1

Template Method Pattern George Blankenship 1

CSCI 253

Object Oriented Design:
Template Method Pattern

George Blankenship

Template Method Pattern George Blankenship 2

Overview
Creational Patterns

Singleton 
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Template Method Pattern George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles, 
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability



Object-Oriented Desgin Template Method Pattern

George Blankenship 2

Template Method Pattern George Blankenship 4

The Template Method Pattern: The Problem
Define the skeleton of an algorithm in an operation, deferring some 
steps to subclasses. Template Method lets subclasses redefine certain 
steps of an algorithm without changing the algorithm's structure.

Sometimes you want to 
specify the order of 
operations that a method 
uses, but allow subclasses 
to provide their own 
implementations of some 
of these operations

Template Method Pattern George Blankenship 5

OpenDocument() Method
• public void OpenDocument (String name) {

if (!CanOpenDocument(name)) { return; }
Document doc = DoCreateDocument();
if (doc != null) {

docs.AddDocument(doc);
AboutToOpenDocument(doc);
doc.Open();
doc.DoRead();

}
}

• The OpenDocument() method is a Template Method
• The template method fixes the order of operations, but allows 

Application subclasses to vary those steps as needed

Template Method Pattern George Blankenship 6

TextDocument Class
• public abstract class TextDocument {

...
public final void printPage (Page page) {

printTextHeader();
printTextBody(page);
printTextFooter();

}
public abstract void printTextHeader();
public final void printTextBody(Page page) {

System.out.println(page.body());
}
public abstract void printTextFooter();
...

}
• The class includes a printPage() template method in a superclass that allows for 

specific document classes to provide unique implementations of the abstract methods 
to print the header and footer



Object-Oriented Desgin Template Method Pattern

George Blankenship 3

Template Method Pattern George Blankenship 7

The Template Method Pattern: Applicability

• Use the Template Method pattern:
– To implement the invariant parts of an algorithm once and leave it up to 

subclasses to implement the behavior that can vary 
– To localize common behavior among subclasses and place it in a 

common class (in this case, a superclass) to avoid code duplication. This 
is a classic example of ”code refactoring.”

– To control how subclasses extend superclass operations. You can define 
a template method that calls "hook" operations at specific points, thereby 
permitting extensions only at those points.

• The Template Method is a fundamental technique for code 
reuse.

Template Method Pattern George Blankenship 8

Template Method
class Account { 

public: void Transaction(float amount); 
void virtual TransactionSubpartA(); 
void virtual TransactionSubpartB(); 
void virtual TransactionSubpartC(); 
} 

void Account::Transaction(float amount) { 
TransactionSubpartA(); TransactionSubpartB(); 
TransactionSubpartC(); // EvenMoreCode; 
} 

class JuniorAccount : public Account { 
public: void virtual TransactionSubpartA(); 
} 

class SavingsAccount : public Account { 
public: void virtual TransactionSubpartC(); 
} 

Account* customer; 
customer = createNewAccount(); 
customer-&gtTransaction(amount);

Template Method Pattern George Blankenship 9

Good Polymorphism/Bad Polymorphism



Object-Oriented Desgin Template Method Pattern

George Blankenship 4

Template Method Pattern George Blankenship 10

The Template Method Pattern: Structure

Template Method Pattern George Blankenship 11

The Template Method Pattern: 
Participants

• Template methods tend to call:
– concrete operations
– concrete AbstractClass operations
– primitive operations - must be overridden
– factory methods
– hook operations - can be overridden

• It is important to denote:
– which methods must overridden
– which methods can be overridden
– which methods can not be overridden

Template Method Pattern George Blankenship 12

The Template Method Pattern: 
Collaboration

• Strategy is like Template Method except in its 
granularity. [Coplien, C++ Report, Mar 96, p88]

• Template Method uses inheritance to vary part 
of an algorithm. Strategy uses delegation to 
vary the entire algorithm. [GOF, p330] 



Object-Oriented Desgin Template Method Pattern

George Blankenship 5

Template Method Pattern George Blankenship 13

The Template Method Pattern: 
Consequences

• Method overloading and method overriding are good examples of template 
method pattern.
– Coercion polymorphism -- refers to a single operation serving several types 

through implicit type conversion. 
– Overloading polymorphism -- refers to using a single identifier for different 

operations. 
– Parametric polymorphism -- refers to a class declaration that allows the same 

field names and method signatures to associate with a different type in each 
instance of that class. 

• Note that the side effect of using coercion polymorphism is casting in and 
casting out if you need specific type to do the work. If you forget to do so, 
you may have unexpected result and it is hard to debug. 

• Without using template method pattern, you may write more lines of code. 
The good thing is that you don't have any side effect by using specific 
designed method and you don't need to cast in or out. 

Template Method Pattern George Blankenship 14

The Template Method Pattern: 
Implementation

• Operations which must be overridden by a subclass should be made abstract
• If the template method itself should not be overridden by a subclass, it should 

be made final
• To allow a subclass to insert code at a specific spot in the operation of the 

algorithm, insert “hook” operations into the template method. These hook 
operations may do nothing by default.

• Try to minimize the number of operations that a subclass must override, 
otherwise using the template method becomes tedious for the developer

• In a template method, the parent class calls the operations of a subclass and 
not the other way around. This is an inverted control structure that's 
sometimes referred to as "the Hollywood principle," as in, "Don't call us, 
we'll call you".


