
Object-Oriented Desgin Strategy Pattern

George Blankenship 1

Strategy Pattern George Blankenship 1

CSCI 253

Object Oriented Design:
Strategy Pattern

George Blankenship

Strategy Pattern George Blankenship 2

Overview
Creational Patterns

Singleton 
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Strategy Pattern George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles, 
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability



Object-Oriented Desgin Strategy Pattern

George Blankenship 2

Strategy Pattern George Blankenship 4

The Strategy Pattern: The Problem
Define a family of algorithms, encapsulate each one, 
and make them interchangeable. Strategy lets the 
algorithm vary independently from clients that use it

•Different  line-breaking 
algorithms in an editor
•Different kinds of memory allocation 
algorithms for collection classes
•Different algorithms for checking 
valid input in different types
of dialog boxes

person
age:

car
registrnr:

Valid-input?

Strategy Pattern George Blankenship 5

HL7 Message Strategy Example

• Build HL7 messages 
– Each message has a unique form
– Encapsulate the message construction in message classes

• Root class “GenerateMessage”
• Derived classes “GenerateX…XMessage”

– generateMessage(…) is the algorithm for individual message
– Normally object is accessed as a “GenerateMessage” object, 

not as “GenerateX…XMessage” object
– Objective of the strategy is to generate the unique string that 

is a message

Strategy Pattern George Blankenship 6

FSM Strategy Example

• Kernel of a application is an FSM
– Application is able to perform multiple simultaneous FSMs
– Application may have one of many FSMs active

• Root class “Statemachine”
• Derived classes “FSMclient”, “FSMserver”, 

“FSMvaDataFlow”, “FSMvendorDataFlow”, and 
“FSMwaitVendorConnection” define possible 
execution algorithm
– Execution algorithm is embedded in xqt() method of state 

machine



Object-Oriented Desgin Strategy Pattern

George Blankenship 3

Strategy Pattern George Blankenship 7

The Strategy Pattern Applicability
• Many different classes differ only in their behavior; using 

Strategy provides a way to configure a class with one of 
many behaviors

• Many different variants of an algorithm are needed; using 
Strategy the variants can be implemented as a class 
hierarchy of algorithms 

• The algorithms use data that clients should not know 
about; using Strategy avoids exposing complex, algorithm 
specific data

Strategy Pattern George Blankenship 8

The Strategy Pattern: Structure

Strategy Pattern George Blankenship 9

The Strategy Pattern: Participants
• Strategy

– Declares an interface common to all supported algorithms
– Context uses this interface to call the algorithm defined by a 

ConcreteStrategy

• ConcreteStrategy subclasses
– Each subclass implements the algorithm using the Strategy 

interface

• Context
– Is configured with a ConcreteStrategy object
– May define an interface that lets Strategy access its data



Object-Oriented Desgin Strategy Pattern

George Blankenship 4

Strategy Pattern George Blankenship 10

The Strategy Pattern: Collaborations
• A Context forwards requests from its clients to its 

Strategy
• Strategy and Context interact to implement the chosen 

algorithm. 
– A Context may pass all the data required by the algorithm to the

Strategy when calling the algorithm. 
– Context may pass itself as an argument to Strategy operations so

that these can call back on the Context as required. 
• Clients usually create and pass a ConcreteStrategy object 

to the Context; thereafter clients interact with the Context 
exclusively

Strategy Pattern George Blankenship 11

The Strategy Pattern: Consequences 
• Hierarchies of Strategy classes define a family of algorithms or

behaviors to reuse. Inheritance can factor out  common 
functionality of the algorithms

• Is alternative to subclassing, I.e. using a  hierarchy of Context 
classes to implement the variations in behavior. The behavior is
not hard-wired in the context so the algorithm can vary 
independently of the Context

• Is an alternative to using conditional statements for selecting 
desired behavior

• Can offers a choice of implementations for the same behavior 
(e.g. space and time tradeoffs)

Strategy Pattern George Blankenship 12

The Strategy Pattern: Concerns
• Clients must be aware of different Strategies. The clients must 

understand the difference amongst what is offered to be able to 
select the appropriate one. Therefor the pattern should only be 
used when the variation in algorithm (implementation) is 
relevant for the client.

• There is some communication overhead between Strategy and 
Context. Strategy defines a (general) interface. Many of the 
simpler algorithms will not need all the information that is 
passed.

• The number of objects in the application increases. Sometimes 
this overhead can be reduced when ConcreteStrategies can be 
implemented by stateless objects that can be shared (cfr. The 
flyweight pattern) 



Object-Oriented Desgin Strategy Pattern

George Blankenship 5

Strategy Pattern George Blankenship 13

The Strategy Pattern: 
Implementation

• Defining  the strategy and contextinterfaces
– Let context pass data to strategy operations

• Keeps context and startegy decoupled
• Context might pass data that strategy does not need

– Let context pass itself to strategy operations and strategy can then request 
data from context

• Couples context and strategy more closely
• Context must have more elaborate interface

• Strategies as template parameters
– In C++ templates can be used to configure a context with a strategy 
– Only applicable when strategy can be selected at compile time and does 

not  need to change at run time


