Object-Oriented Design Singleton Pattern

CSCI 253

Object Oriented Design:
Singleton Pattern
George Blankenship

Singleton Pattern George Blankenship 1

Overview

Creational Patterns
(3 Singleton

El Abstract factory
gl Factory Method
gl Prototype

=) Builder

Singleton Pattern

Structural Patterns
Composite
Fagade

£ Proxy

& Flyweight

& Adapter

[Bridge

& Decorator

George Blankenship

Behavioral Patterns
& Chain of Respons.

& Command

& Interpreter
Iterator

& Mediator

& Memento

) Observer

State

Strategy

& Template Method
& Visitor 2

The Elements of a Design Pattern

« A pattern name
¢ The problem that the pattern solves
— Including conditions for the pattern to be applicable
« The solution to the problem brought by the pattern

— The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

— Not a particular concrete design or implementation
« The consequences of applying the pattern

— Time and space trade off

— Language and implementation issues

— Effects on flexibility, extensibility, portability

Singleton Pattern George Blankenship 3

George Blankenship 1

Object-Oriented Design Singleton Pattern

The Singleton Pattern: The Problem

Ensure that a class has exactly one instance and provide a
global point of access to it

- There can be only
one print spooler, one
file system, one window
manager in a standard
application

- There is only one
game board in a

/ monopoly game; one
maze in a maze-game

Monopoly Board

: Monopoly Board

Singleton Pattern George Blankenship 4

The Singleton Pattern Participant &

Collaboration
* Participant:
« Singleton:
— is responsible for creating and storing its own unique
instance

— defines an Instance operation that lets clients access its

unique instance
* Collaboration:

— the “class level” Instance operation will either return or
create and return the sole instance; a “class level” attribute
will contain either a default indicating there is no instance
yet or the sole instance

Singleton Pattern George Blankenship 5

Control Unique Existance

Singleton
stafic Instance() O—--q9-—--——-—-——1 returm uniguelnsiance
SingletonOperation()

GetSingletonDatal)

static uniquelnstance
singletonData

Singleton Pattern George Blankenship 6

George Blankenship 2

Object-Oriented Design

Exception Definition

class SingletonException extends
RuntimeException {

/I new exception type for singleton classes
public SingletonException() {super();}

/I new exception type with description

public SingletonException(String s) {super(s);}
}

Singleton Pattern George Blankenship

Singleton Pattern

PrintSpooler Class

class PrintSpooler {
/lthis is a prototype for a printer-spooler class
Ilsuch that only one instance can ever exist
static boolean instance_flag=false; //true if 1 instance
public PrintSpooler() throws SingletonException {
if (instance_flag)
throw new SingletonException("Only one spooler allowed");
else
instance_flag = true; //set flag for 1 instance
System.out.printn(“spooler opened");

}

J/-

public void finalize() {
instance_flag = false; //clear if destroyed

}

Singleton Pattern George Blankenship

Print Spooler Creation

public class singleSpooler {
static public void main(String argv[]) {
PrintSpooler pr1, pr2;
/lopen one spooler--this should always work
System.out.printin("Opening one spooler");
try{prl = new PrintSpooler();}
catch (SingletonException e) {System.out.printIn(e.getMessage());}
Iltry to open another spooler --should fail
System.out.printIn("Opening two spoolers");
try {pr2 = new PrintSpooler();}
catch (SingletonException e) {System.out.printin(e.getMessage());}
}
}

Singleton Pattern George Blankenship

George Blankenship

Object-Oriented Design Singleton Pattern

The Singleton Pattern Consequences

« + Controlled access to sole instance : because the Singleton
class encapsulates its sole instance it can have strict control

¢ + Reduced name space: is an improvement over polluting the
names space with global variables that store sole instances

« + Permits refinement of operations and representation: the
Singleton class may be subclassed and the application can be
configured with an instance of the class you need at run time

« + Permits a variable number of instances: the same approach
can be used to control the number of instances that can exist; an
operation that grants access to the instance(s) must be provided

« + More flexible than using class operations only

Singleton Pattern George Blankenship 10

The Singleton Pattern
Implementation

< Ensuring a unique instance:
— the constructors or new operations must be protected or overridden to
avoid that other instances are made accidentally by user code
« Subclassing the Singleton class:
— the main issue is installing a unique instance of the desired subtype at run
time
— when all subclasses are known beforehand the Instance operation can be
a conditional and create the right instance depending on some parameter
or explicit user input
— when the subclasses are not known beforehand a register can be used: all
subclasses register an instance in it; the Instance operation picks the
correct instance out of it

Singleton Pattern George Blankenship 1

George Blankenship 4

