
Object-Oriented Design Singleton Pattern

George Blankenship 1

Singleton Pattern George Blankenship 1

CSCI 253

Object Oriented Design:
Singleton Pattern

George Blankenship

Singleton Pattern George Blankenship 2

Overview
Creational Patterns

Singleton
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Singleton Pattern George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability

Object-Oriented Design Singleton Pattern

George Blankenship 2

Singleton Pattern George Blankenship 4

The Singleton Pattern: The Problem
Ensure that a class has exactly one instance and provide a
global point of access to it

- There can be only
one print spooler, one
file system, one window
manager in a standard
application
- There is only one
game board in a
monopoly game; one
maze in a maze-game

Monopoly Board

: Monopoly Board : Monopoly Board

Singleton Pattern George Blankenship 5

The Singleton Pattern Participant &
Collaboration

• Participant:
• Singleton:

– is responsible for creating and storing its own unique
instance

– defines an Instance operation that lets clients access its
unique instance

• Collaboration:
– the “class level” Instance operation will either return or

create and return the sole instance; a “class level” attribute
will contain either a default indicating there is no instance
yet or the sole instance

Singleton Pattern George Blankenship 6

Control Unique Existance

Object-Oriented Design Singleton Pattern

George Blankenship 3

Singleton Pattern George Blankenship 7

Exception Definition

class SingletonException extends
RuntimeException {
// new exception type for singleton classes
public SingletonException() {super();}
// new exception type with description
public SingletonException(String s) {super(s);}
}

Singleton Pattern George Blankenship 8

PrintSpooler Class
class PrintSpooler {

//this is a prototype for a printer-spooler class
//such that only one instance can ever exist
static boolean instance_flag=false; //true if 1 instance
public PrintSpooler() throws SingletonException {

if (instance_flag)
throw new SingletonException("Only one spooler allowed");

else
instance_flag = true; //set flag for 1 instance

System.out.println("spooler opened");
}

//---
public void finalize() {

instance_flag = false; //clear if destroyed
}

}

Singleton Pattern George Blankenship 9

Print Spooler Creation
public class singleSpooler {

static public void main(String argv[]) {
PrintSpooler pr1, pr2;
//open one spooler--this should always work
System.out.println("Opening one spooler");
try{pr1 = new PrintSpooler();}
catch (SingletonException e) {System.out.println(e.getMessage());}
//try to open another spooler --should fail
System.out.println("Opening two spoolers");
try {pr2 = new PrintSpooler();}
catch (SingletonException e) {System.out.println(e.getMessage());}

}
}

Object-Oriented Design Singleton Pattern

George Blankenship 4

Singleton Pattern George Blankenship 10

The Singleton Pattern Consequences
• + Controlled access to sole instance : because the Singleton

class encapsulates its sole instance it can have strict control
• + Reduced name space: is an improvement over polluting the

names space with global variables that store sole instances
• + Permits refinement of operations and representation: the

Singleton class may be subclassed and the application can be
configured with an instance of the class you need at run time

• + Permits a variable number of instances: the same approach
can be used to control the number of instances that can exist; an
operation that grants access to the instance(s) must be provided

• + More flexible than using class operations only

Singleton Pattern George Blankenship 11

The Singleton Pattern
Implementation

• Ensuring a unique instance:
– the constructors or new operations must be protected or overridden to

avoid that other instances are made accidentally by user code
• Subclassing the Singleton class:

– the main issue is installing a unique instance of the desired subtype at run
time

– when all subclasses are known beforehand the Instance operation can be
a conditional and create the right instance depending on some parameter
or explicit user input

– when the subclasses are not known beforehand a register can be used: all
subclasses register an instance in it; the Instance operation picks the
correct instance out of it

