Object-Oriented Design Prototype Pattern

CSCI 253

Object Oriented Design:
Builder Pattern
George Blankenship

Prototype Pattern George Blankenship 1

Overview

Creational Patterns
(3 Singleton

El Abstract factory
gl Factory Method
gl Prototype

=) Builder

Prototype Pattern

Structural Patterns
Composite
Fagade

£ Proxy

& Flyweight

& Adapter

[Bridge

& Decorator

George Blankenship

Behavioral Patterns
& Chain of Respons.

& Command

& Interpreter
Iterator

& Mediator

& Memento

) Observer

State

Strategy

& Template Method
& Visitor 2

The Elements of a Design Pattern

« A pattern name
¢ The problem that the pattern solves
— Including conditions for the pattern to be applicable
« The solution to the problem brought by the pattern

— The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

— Not a particular concrete design or implementation
« The consequences of applying the pattern

— Time and space trade off

— Language and implementation issues

— Effects on flexibility, extensibility, portability

Prototype Pattern George Blankenship 3

George Blankenship 1

Object-Oriented Design

Prototype Pattern

The Prototype Pattern: The Problem

Specify the kinds of objects to create using a prototypical

instance and creatern%fstances by copying this prototype
¥

- when an application needs
the flexibility to be able to
specify the classes to
instantiate at run time

- when instance of a class
have only very few different
combinations of state

George Blankenship 4

Prototype Pattern

RotateTood GraphicTool o>
Mangratai] Mangusaie e

[proionye
el

Music Sheet

Prototype Pattern George Blankenship 5
Client prototype Prototype
Operation() ¢ Cianed}
1
1
=
p = profotype->Clone()
ConcretePrototypel CancretePrototype2
Clone{) § Clonef) ¢
i i
1 1
retum copy of an&| return copy of sD\fH
Prototype Pattern George Blankenship 6

George Blankenship

Object-Oriented Design Prototype Pattern

The Prototype Pattern Participants
an Collaborations

* Prototype: declares an interface for cloning itself

« ConcretePrototype: implements an operation for cloning
itself

« Client: creates a new object by asking the prototype to clone
itself

« Client asks a Prototype to clone itself

Prototype Pattern George Blankenship 7

The Prototype Pattern
Consequences (1)

« + Hides the concrete product classes from the client: clients can
work with application specific classes without modification

» + Products can be added and removed at run-time: new concrete
products can be incorporated by just registering them with the
client

« + Specifying new objects by varying values: new kinds of
objects are effectively defined by instantiating a specific class,
filling in some of the instance variables and registering this as a
prototype

 + Specifying new objects by varying structure: complex user-
defined structures can be registered as prototypes as well and
used over and over again by cloning them

Prototype Pattern George Blankenship 8

The Prototype Pattern
Consequences (2)

« + Reduced subclassing: as opposed to the Factory Method
pattern that often produces a hierarchy of creator classes that
mirrors the hierarchy of ConcreteProducts

< + Configuring an application with classes dynamically: when
the run-time environment supports dynamic loading of classes
the prototype pattern is a key to exploiting these facilities in
static languages (the constructors of the dynamically loaded
classes cannot be addressed statically, instead the run-time
environment creates automatically a prototype instance that the
application can use through a prototype manager)

¢ - Implementing the Clone operation: is difficult when the classes
under consideration already exist or when the internals include
objects that do not support copying or have circular references

Prototype Pattern George Blankenship 9

George Blankenship 3

Object-Oriented Design Prototype Pattern

The Prototype Pattern
Implementation

 Using a prototype manager: when the number of prototypes in a system is not
fixed it is best to use a registry of available prototypes

« Implementing the clone operation: many languages have some support for.
implementing the clone operator (copy constructors in C++, copy method in
Smalltalk, save + load in systems that support these) but in itself they do not
solve the shallow / deep copy issue

< Initialising clones: some clients are happy with the clone as it is, others will
want to initialise the clone; passing parameters to the clone operation
precludes a uniform cloning interface; either use state changing operation
that are provided on the clone immediately after cloning or provide a
Initialise method

 Inlanguages that treat classes as first class objects the class object itself is
like a prototype for creating instances of each class

Prototype Pattern George Blankenship 10

George Blankenship 4

