
Object-Oriented Design Prototype Pattern

George Blankenship 1

Prototype Pattern George Blankenship 1

CSCI 253

Object Oriented Design:
Builder Pattern

George Blankenship

Prototype Pattern George Blankenship 2

Overview
Creational Patterns

Singleton
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Prototype Pattern George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability

Object-Oriented Design Prototype Pattern

George Blankenship 2

Prototype Pattern George Blankenship 4

The Prototype Pattern: The Problem
Specify the kinds of objects to create using a prototypical
instance and create new instances by copying this prototype

- when an application needs
the flexibility to be able to
specify the classes to
instantiate at run time

- when instance of a class
have only very few different
combinations of state

Prototype Pattern George Blankenship 5

Music Sheet

Prototype Pattern George Blankenship 6

Participants

Object-Oriented Design Prototype Pattern

George Blankenship 3

Prototype Pattern George Blankenship 7

The Prototype Pattern Participants
an Collaborations

• Prototype: declares an interface for cloning itself

• ConcretePrototype: implements an operation for cloning
itself

• Client: creates a new object by asking the prototype to clone
itself

• Client asks a Prototype to clone itself

Prototype Pattern George Blankenship 8

The Prototype Pattern
Consequences (1)

• + Hides the concrete product classes from the client: clients can
work with application specific classes without modification

• + Products can be added and removed at run-time: new concrete
products can be incorporated by just registering them with the
client

• + Specifying new objects by varying values: new kinds of
objects are effectively defined by instantiating a specific class,
filling in some of the instance variables and registering this as a
prototype

• + Specifying new objects by varying structure: complex user-
defined structures can be registered as prototypes as well and
used over and over again by cloning them

Prototype Pattern George Blankenship 9

The Prototype Pattern
Consequences (2)

• + Reduced subclassing: as opposed to the Factory Method
pattern that often produces a hierarchy of creator classes that
mirrors the hierarchy of ConcreteProducts

• + Configuring an application with classes dynamically: when
the run-time environment supports dynamic loading of classes
the prototype pattern is a key to exploiting these facilities in
static languages (the constructors of the dynamically loaded
classes cannot be addressed statically, instead the run-time
environment creates automatically a prototype instance that the
application can use through a prototype manager)

• - Implementing the Clone operation: is difficult when the classes
under consideration already exist or when the internals include
objects that do not support copying or have circular references

Object-Oriented Design Prototype Pattern

George Blankenship 4

Prototype Pattern George Blankenship 10

The Prototype Pattern
Implementation

• Using a prototype manager: when the number of prototypes in a system is not
fixed it is best to use a registry of available prototypes

• Implementing the clone operation: many languages have some support for
implementing the clone operator (copy constructors in C++, copy method in
Smalltalk, save + load in systems that support these) but in itself they do not
solve the shallow / deep copy issue

• Initialising clones: some clients are happy with the clone as it is, others will
want to initialise the clone; passing parameters to the clone operation
precludes a uniform cloning interface; either use state changing operation
that are provided on the clone immediately after cloning or provide a
Initialise method

• In languages that treat classes as first class objects the class object itself is
like a prototype for creating instances of each class

