
Object-Oriented Desgin Observer Pattern

George Blankenship 1

Observer Pattern George Blankenship 1

CSCI 253

Object Oriented Design:
Observer Pattern

George Blankenship

Observer Pattern George Blankenship 2

Overview
Creational Patterns

Singleton
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Observer Pattern George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability

Object-Oriented Desgin Observer Pattern

George Blankenship 2

Observer Pattern George Blankenship 4

The Observer Pattern: The Problem

Subject Observers

Assume a one to many relationship between objects,
when one changes the dependents must be updated

- different types of GUI
elements depicting the
same application data
- different windows
showing different views
on the same application
model

Also known as : Dependants, Publish-Subscribe

Observer Pattern George Blankenship 5

Observers

Observer Pattern George Blankenship 6

The Observer Pattern: Structure

Object-Oriented Desgin Observer Pattern

George Blankenship 3

Observer Pattern George Blankenship 7

The Observer Pattern: Participants

• Subject: knows its observers, provides an interface for attaching (subscribe)
and detaching (unsubscribe) observers and provides a notify method that
calls update on all its observers

• Observer: provides an update interface

• ConcreteSubject: maintains a state relevant for the application at hand,
provides methods for getting and setting that state, calls notify when its state
is changed

• ConcreteObserver: maintains a reference to a concrete subject, stores a
state that is kept consistent with the subject's state and implements the
observer's update interface

Observer Pattern George Blankenship 8

Participant Map

Observer Pattern George Blankenship 9

Participant Relations

Object-Oriented Desgin Observer Pattern

George Blankenship 4

Observer Pattern George Blankenship 10

The Observer Pattern: Collaboration

• ConcreteSubject notifies its Observers whenever a
change occurs that could make its observers' state
inconsistent

• After being informed of a change in the
ConcreteSubject, a ConcreteObserver may query the
Subject for information concerning its state and then
reconcile its own state with that of the Subject

• The change in the ConcreteSubject can be initiated by
one of the Observers or by some other application
object

Observer Pattern George Blankenship 11

The Observer Pattern: Consequences

• Abstract and minimal coupling between Subject and
Observer: the subject does not know the concrete class of any
observer, concrete subject and concrete observer classes can be
reused independently, subject and observer can even belong to
different abstraction layers in the system

• Support for broadcast communication: the notification a
subject sends does not need to specify a receiver, it will
broadcast to all interested (subscribed) parties

• Unexpected updates: observers don’t have knowledge about
each others presence, a small operation might cause a cascade of
spurious updates

Observer Pattern George Blankenship 12

The Observer Pattern: Implementation

• Map subjects to their observer: the Subject keeps explicit references to
the Observers it should notify or some associative lookup is installed;
memory/time trade off must be made

• Observing more than one subject can make sense in some situations

• Who triggers the updates (i.e. who calls notify):
– have all state changing operations on Subject call notify after the

subject’s state is changed; consecutive operations cause several
consecutive updates which may not be necessary and is inefficient

– make clients responsible for calling notify at the right time; clients get
the added responsibility to call notify which makes errors likely

Object-Oriented Desgin Observer Pattern

George Blankenship 5

Observer Pattern George Blankenship 13

The Observer Pattern: Implementation

• When deleting a Subject the Observers should be
notified so that they can reset their Subject reference

• Make sure that Subject is self consistent before
calling notify

• Update efficiency can be improved when the observers
register for specific events of interest

• Use appropriate protocol such as the pull and the push
models

• Encapsulate complex update semantics

Observer Pattern George Blankenship 14

Implementation

