
1

Object Oriented Design

Part 2

Program Design

• Analysis
• Design
• Implementation

Analysis Phase

• Functional Specification
– Completely defines tasks to be solved
– Free from internal contradictions
– Readable both by domain experts and

software developers
– Reviewable by diverse interested parties
– Testable against reality

2

Design Phase

• Goals
– Identify classes
– Identify behavior of classes
– Identify relationships among classes

• Artifacts
– Textual description of classes and key methods
– Diagrams of class relationships
– Diagrams of important usage scenarios
– State diagrams for objects with rich state

Implementation Phase

• Implement and test classes
• Combine classes into program
• Avoid "big bang" integration
• Prototypes can be very useful

Problem 1:

• Design a voicemail system for use in your
• typical cellphone.
• How would the requirements look like?
• What would be a typical session?
• What modules are involved?

3

Identifying Classes in design
• Rule of thumb: Look for nouns in problem

description

• Mailbox
• Message
• User
• Passcode
• Extension
• Menu

When defining classes

• Focus on concepts, not implementation
• ????? stores messages

– Lets say a messageQueue
• Don't worry yet how the queue is

implemented

Categories

• Tangible Things
• Agents
• Events and Transactions
• Users and Roles
• Systems
• System interfaces and devices
• Foundational Classes

4

Identifying Responsibilities

• Rule of thumb: Look for verbs in problem
description

• Behavior of MessageQueue:

• Add message to tail
• Remove message from head
• Test whether queue is empty

OO Design

• OO Principle: Every operation is the
responsibility of a single class

• Example:
– Add message to mailbox

• Who is responsible:
– Message or Mailbox?

Relationship

• Dependency ("uses")
• Aggregation ("has")
• Inheritance ("is")

5

Dependency

• C depends on D: Method of C manipulates
objects of D

• Example: Mailbox depends on Message
• If C doesn't use D, then C can be

developed without knowing about D

Java Definitions
• When class X extends Y

– X is a subclass
– Y is a superclass

• When interface A extends Interface B
– A is a sub-interface
– B is a super-interface

• When G implements interface B
– G is an implementation of B
– B is an interface of class G

Independent operations

• Minimize dependency:
– reduce having to relay on anything set in

stone
• Example: Replace
void print() // prints to System.out
• with
String getText() // can print anywhere
• Removes dependence on System,

PrintStream

6

Aggregation

• Object of a class contains objects of
another class

• Example: MessageQueue aggregates
Messages

• Example: Mailbox aggregates
MessageQueue

• Implemented through instance fields

Relationships
• 1 : 1 or 1 : 0...1 relationship:

public class Mailbox
{
. . .
private Greeting myGreeting;
}

• 1 : n relationship:
public class MessageQueue
{
. . .
private ArrayList<Message> elements;
}

Inheritance
• More general class = superclass
• More specialized class = subclass
• Subclass supports all method interfaces of

superclass (but implementations may differ)
• Subclass may have added methods, added state
• Subclass inherits from superclass
• Example:

– ForwardedMessage inherits from Message
– Greeting does not inherit from Message (Can't store

greetings in mailbox)

7

Use Cases

• Analysis technique
• Each use case focuses on a specific scenario
• Use case = sequence of actions
• Action = interaction between actor and computer

system
• Each action yields a result
• Each result has a value to one of the actors
• Use variations for exceptional situations

Use case: Leave a Message
1. Caller dials main number of voice mail system
2. System speaks prompt
• Enter mailbox number followed by #
3. User types extension number
4. System speaks
• You have reached mailbox xxxx. Please leave

a message now
5. Caller speaks message
6. Caller hangs up
7. System places message in mailbox

Variations

• user enters invalid extension number
– What do you do?
– Who does it?

• What if user hangs up instead of using
message?

• How many attempts at password?

8

CRC Cards

• CRC = Classes, Responsibilities,
Collaborators

• Use an index card for each class
• Class name on top of card
• Responsibilities on left
• Collaborators on right

CRC

Example

• Use case: "Leave a message"
• Caller connects to voice mail system
• Caller dials extension number
• "Someone" must locate mailbox
• Neither Mailbox nor Message can do this
• New class: MailSystem
• Responsibility: manage mailboxes

9

UML

• UML = Unified Modeling Language
• Many diagram types
• We'll use three types:

– Class Diagrams
– Sequence Diagrams
– State Diagrams

UML

• Why do we model?
– – Provide structure for problem solving
– – Experiment to explore multiple solutions
– – Furnish abstractions to manage complexity
– – Decrease development costs
– – Manage the risk of mistakes

• Graphical Approach
– – Picture is worth 1000 words

UML Building Blocks
• model elements (classes, interfaces, components, use

cases, etc.)
• relationships (associations, generalization,

dependencies, etc.)
• diagrams (class diagrams, use case diagrams,
• interaction diagrams, etc.)
• Simple building blocks are used to create large, complex
• structures
• – elements, bonds and molecules in chemistry
• – components, connectors and circuit boards in

hardware

10

Definition: UML

• It is a language
– – Syntax & Semantics

• When we model a concept there rules on
how things can be put together and what it
means when they are organized in a
specific way

Applications

• Software design
• System requirements
• Documenting system process

View

• UML provides a view
– – Many views of system
– – Don’t stuff everything into one huge diagram
– – Specific diagram types can express specific

concept
– – Sometimes multiple diagrams can apply

• Pick best which you think can express the
idea

• We will be covering a simple UML

11

Modeling

• What is modeling?
• Means to capture idea, relationship,

decision, and requirements in a well
defined notation.

Diagrams

• Visual representation of concepts and
relationships

• Structural Diagrams
• Behavior Diagrams

UML

Based on

Practical UML™: A Hands-On Introduction for
Developers - by Randy Miller

12

Use case diagrams

• Describe what a system does from the
standpoint of an external observer.

• Emphasis - what a system does not how.
• A scenario is an example of what happens

when someone interacts with the system.
• Scenario: a medical clinic.

– "A patient calls the clinic to make an appointment for
a yearly checkup. The receptionist finds the nearest
empty time slot in the appointment book and
schedules the appointment for that time slot. "

...

• A use case is a summary of scenarios for
a single task or goal.

• An actor initiates the events in that task.
• Actors = roles
• A use case diagram is a collection of

actors, use cases, and their
communications.

• Make Appointment as part of a diagram
with four actors and four use cases.

Make an Appointment

13

Usage

• Use case diagrams are helpful in
three areas.
– determining features (requirements).
– communicating with clients.
– generating test cases.

Expansion

• A simple use case diagram can be
expanded with additional features to
display more information.

• Use case features.
– system boundaries
– generalizations
– includes
– extensions

14

Features
• A system boundary rectangle separates

the clinic system from the external actors.

• A generalization shows that one use case
is simply a special kind of another.

• Pay Bill - parent; Bill Insurance - child

• Generalization - a line with a triangular
arrow head toward the parent use case

Include
• Include relationships factor use cases into

additional ones.
• Helpful when the same use case can be factored

out of two different use cases.
• Both Make Appointment and Request

Medication include Check Patient Record as a
subtask.

• Include - a dotted line beginning at base use
case ending with an arrows pointing to the
include use case.

• The dotted line is labeled <<include>>.

15

Extend

• An extend relationship - one use case is a
variation of another.

• Extend notation is a dotted line, labeled
<<extend>>, and with an arrow toward the
base case.

• The extension point, which determines
when the extended case is appropriate, is
written inside the base case.

Class diagrams
• Overview of a system showing classes and the

relationships among them.
• Class diagrams are static -- they display what interacts

but not what happens when they do interact.
• Next: a customer order from a retail catalog.
• The central class is the Order.
• Associated with it are the Customer making the

purchase and the Payment.
• A Payment is one of three kinds: Cash, Check, or

Credit.
• The order contains OrderDetails (line items), each with

its associated Item.

16

Class Notation
• Class notation - rectangle divided into three parts:

– class name,
– attributes, and
– operations.

• Names of abstract classes, such as Payment, are in italics.
• Relationships between classes are the connecting links.
• association -- a relationship between instances of the two classes.

– There is an association between two classes if an instance of one class
must know about the other in order to perform its work.

• aggregation -- an association in which one class belongs to a
collection.
– An aggregation has a diamond end pointing to the part containing the

whole. In our diagram, Order has a collection of OrderDetails.
• generalization -- an inheritance link indicating one class is a

superclass of the other.
– A generalization has a triangle pointing to the superclass. Payment is a

superclass of Cash, Check, and Credit.

Association
• An association has two ends.

– An end may have a role name to clarify the nature of the association.
– For example, an OrderDetail is a line item of each Order.

• A navigability arrow on an association shows which direction the
association can be traversed or queried.

• An OrderDetail can be queried about its Item, but not the other way
around. The arrow also lets you know who "owns" the association's
implementation; in this case, OrderDetail has an Item.

• Associations with no navigability arrows are bi-directional.
• The multiplicity of an association end is the number of possible

instances of the class associated with a single instance of the other
end.

• Multiplicities are single numbers or ranges of numbers.
• In our example, there can be only one Customer for each Order,

but a Customer can have any number of Orders.

Multiplicities

at least one instance1..*

exactly one instance 1

no limit on the number of
instances (including
none).

0..* or *

zero or one instance. The
notation n . . m indicates
n to m instances

0..1

MeaningMultiplicities

17

Additional Features

• All class diagrams have classes, links, and
multiplicities.

• Additional items:
– compositions
– class member visibility and scope
– dependencies and constraints
– interfaces

Composition and aggregation

• Associations in which an object is part of a
whole are aggregations.

• Composition is a strong association in
which the part can belong to only one
whole -- the part cannot exist without the
whole.
– Composition is denoted by a filled diamond at

the whole end

18

Class information: visibility and
scope

• The class notation is a 3-piece rectangle
with the class name, attributes, and
operations.

• Attributes and operations can be labeled
according to access and scope.

Conventions
• The illustration uses the following conventions.

– Static members are underlined. Instance members
are not.

– The operations follow this form:
<access specifier> <name> (<parameter list>) :
<return type>

– The parameter list shows each parameter type
preceded by a colon.

– Access specifiers appear in front of each member.
• + public
• - private
• # protected

19

Dependencies and constraints
• A dependency is a relation between two

classes in which a change in one may force
changes in the other.
– Dependencies are drawn as dotted lines. In the class

diagram below, Co_op depends on Company. If you
decide to modify Company, you may have to change
Co_op too.

• A constraint is a condition that every
implementation of the design must satisfy.
Constraints are written in curly braces { }.
– The constraint on our diagram indicates that a

Section can be part of a CourseSchedule only if it is
not canceled.

Relationships
• Class diagrams have three kinds of

relationships.
– association -- a relationship between instances of

the two classes. There is an association between two
classes if an instance of one class must know about
the other in order to perform its work.

– aggregation -- an association in which one class
belongs to a collection. An aggregation has a
diamond end pointing to the part containing the
whole. In our diagram, Order has a collection of
OrderDetails.

– generalization -- an inheritance link indicating one
class is a superclass of the other. A generalization
has a triangle pointing to the superclass. Payment is
a superclass of Cash, Check, and Credit.

20

...
• An association has two ends. An end may have a role

name to clarify the nature of the association. For
example, an OrderDetail is a line item of each Order.

• A navigability arrow on an association shows which
direction the association can be traversed or queried. An
OrderDetail can be queried about its Item, but not the
other way around. The arrow also lets you know who
"owns" the association's implementation; in this case,
OrderDetail has an Item. Associations with no
navigability arrows are bi-directional.

• The multiplicity of an association end is the number of
possible instances of the class associated with a single
instance of the other end. Multiplicities are single
numbers or ranges of numbers. In our example, there
can be only one Customer for each Order, but a
Customer can have any number of Orders.

Dependencies and constraints

• Dependency - relation between two classes in
which a change in one may force changes in the
other.
– Dependencies are drawn as dotted lines. In the class

next diagram, Co_op depends on Company.
• A constraint is a condition that every

implementation of the design must satisfy.
• Constraints are written in curly braces { }.

– CourseSchedule only if it is not canceled.

21

Interfaces and stereotypes
• Interface - set of operation signatures.
• The next class diagram is a model of a

professional conference.
• SessionTalk - a single presentation, and

Session - a one-day collection of related
SessionTalks.

• ShuttleSchedule with its list of ShuttleStops is
important to the attendees staying at remote
hotels.

• The diagram has one constraint, that the
ShuttleStops are ordered.

Interfaces

• There are three interfaces in the diagram:
IDated, ILocatable, and ITimed.

• Interfaces typically begin with the letter I
and written in italics.

• A class such as ShuttleStop, with
operations matching those in an interface,
such as ILocatable, is an
implementation (or realization) of the
interface.

22

Stereotype
• The ShuttleStop class node has the stereotype

<< place>>.
• Stereotypes, which provide a way of extending

UML, are new kinds of model elements created
from existing kinds.

• A stereotype name is written above the class
name.

• Ordinary stereotype names are enclosed in <<
>>.

• An interface is a special kind of stereotype.

Packages and object diagrams

• To simplify complex class diagrams, you
can group classes into packages.

• A package is a collection of logically
related UML elements.

• The next diagram is a business model in
which the classes are grouped into
packages.

• Packages appear as rectangles with small
tabs at the top. .

23

Object diagrams

• Show instances instead of classes.
• They are useful for explaining small pieces

with complicated relationships, especially
recursive relationships.

• This small class diagram shows that a
university Department can contain lots of
other Departments

24

Sequence Diagrams

• A sequence diagram is an interaction
diagram that details how operations are
carried out -- what messages are sent and
when.

• Sequence diagrams are progress with
time down the page.

• The objects involved in the operation are
listed from left to right according to when
they take part in the message sequence.

25

Sequence diagrams with
asynchronous messages

• A message is asynchronous the sender is not
blocked until the message is delivered.

• The following sequence diagram illustrates the
action of a nurse requesting a diagnostic test at
a medical lab.

• There are two asynchronous messages from
the Nurse:
1. ask the MedicalLab to reserve a date for the test and
2. ask the InsuranceCompany to approve the test.

• The order in which these messages are sent or
completed is irrelevant.

Notations

an asynchronous
message

a synchronous message

simple message return
(optional)

message which may be
synchronous or
asynchronous

MeaningSymbol simple

26

Collaboration Diagrams

• Collaboration diagrams are also
interaction diagrams.

• Same information as sequence diagrams,
but focus on object roles instead of the
times that messages are sent.

• In a sequence diagram, object roles are
the vertices and messages are the
connecting links.

...
• The object-role rectangles are labeled with either

class or object names (or both).
• Class names are preceded by colons (:).
• Each message in a collaboration diagram has a

sequence number.
• The top-level message is numbered 1.
• Messages at the same level (sent during the

same call) have the same decimal prefix but
suffixes of 1, 2, etc. according to when they
occur.

27

Statechart Diagrams
• Objects have behaviors and state.
• The state of an object depends on activity or condition.
• A statechart diagram - the possible states of the object

and the transitions that change state.
• Example

– The login part of an online banking system.
– Logging - entering a valid social security number and personal id

number, then submitting the information for validation.
• Logging - states: Getting SSN, Getting PIN, Validating,

and Rejecting.
• Each state comes a complete set of transitions that

determine the subsequent state.

States, Transitions
• States - rounded rectangles.
• Transitions - arrows from one state to another.
• Events or conditions that trigger transitions -

beside arrows.
• The initial state (black circle) and final states
• The action that occurs as a result of an event or

condition is expressed as /action.
• While in Validating state, the object does not

wait for an outside event.
– It performs an activity.

• The result of that activity determines its
subsequent state.

28

Concurrency and asynchronization
in statechart diagrams

• States in statechart diagrams can be nested.
• Related states can be grouped together into a single

composite state.
• Nesting states - an activity involves concurrent or

asynchronous subactivities.
• An auction with two concurrent threads leading into two

substates of the composite state Auction:
– Bidding itself is a composite state with three substates.
– Authorizing Credit has two substates.

• Entering the Auction requires a fork at the start
into two separate threads.

• Unless there is an abnormal exit (Cancelled or
Rejected), the exit from the Auction composite
state occurs when both substates have exited.

Activity Diagrams
• A fancy flowchart.
• Activity diagrams and statechart diagrams are related.
• Statechart diagram focuses on an object undergoing a

process
• Activity diagram focuses on flow of activities involved in

a single process.
• Example:

– "Withdraw money from a bank account through an ATM."
• The classes of the activity are Customer, ATM, and

Bank.
• Process begins at the black start circle.
• The activities are rounded rectangles.

29

...
• Activity diagrams can be divided into object swimlanes

that determine which object is responsible for which
activity.

• A single transition comes out of each activity,
connecting it to the next activity.

• A transition may branch into two or more mutually
exclusive transitions.

• Guard expressions (inside []) label the transitions
coming out of a branch.

• A branch and its subsequent merge marking the end of
the branch appear in the diagram as hollow diamonds.

• A transition may fork into two or more parallel activities.
• The fork and the subsequent join of the threads coming

out of the fork appear in the diagram as solid bars.

Component and deployment
diagrams

• Component diagrams are physical analogs of
class diagram.

• Deployment diagrams show the physical
configurations of software and hardware.

• The next deployment diagram shows the
relationships among software and hardware
components involved in real estate transactions

• The physical hardware is made up of nodes.
• Each component belongs on a node.
• Components are shown as rectangles with two

tabs at the upper left.

30

