
Object-Oriented Desgin Memento Pattern

George Blankenship 1

Memento Pattern George Blankenship 1

CSCI 253

Object Oriented Design:
Memento Pattern

George Blankenship

Memento Pattern George Blankenship 2

Overview
Creational Patterns

Singleton
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Memento Pattern George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability

Object-Oriented Desgin Memento Pattern

George Blankenship 2

Memento Pattern George Blankenship 4

The Memento Pattern: The Problem
• The memento pattern is used to encapsulate the current state of an object in a

memento object in order to be able to restore the object state later without
exposing the internal representation of the object to the outside world

• An object that stores form information
– A user can to make changes in the form
– If they make a mistake, it can be returned to the original form values.
– The object coule be serialized and then unserialized later but this is obviously

messy and not a good solution.
– An outside object use the form's accessor methods to pull out what you need to

save the state but this causes high coupling between the class saving the state and
the form; any changes in the form would require changes in the other class.

– We need something that will allow you to save the state and restore it later
without having to get involved in the details.

-
-

Memento Pattern George Blankenship 5

Example
The solution to this problem is make use of a Memento object which is
responsible for storing the snapshot or current state. When a Memento object
is needed, the Caretaker object, the object responsible for storing the
Memento object, requests a Memento from the Originator via the
createMemento() method. The state can then later be restored by passing the
a Memento to the Originator.setMemento() method.

Memento Pattern George Blankenship 6

Memento Save/Load
• recommendation: use a Memento class that has save/load code

// write the object named someObject to file "file.dat"
try {
OutputStream os = new FileOutputStream("file.dat");
ObjectOutputStream oos = new ObjectOutputStream(os);
oos.writeObject(someObject);
os.close();

} catch (IOException e) { ... }

// load the object named someObject from file "file.dat"
try {
InputStream is = new FileInputStream("file.dat");
ObjectInputStream ois = new ObjectInputStream(is);
ArrayList someList = (ArrayList)ois.readObject();
is.close();

} catch (Exception e) { ... }

Object-Oriented Desgin Memento Pattern

George Blankenship 3

Memento Pattern George Blankenship 7

Memento Sequence Diagram

Memento Pattern George Blankenship 8

The Memento Pattern: Structure

Memento Pattern George Blankenship 9

The Memento Pattern: Participants
• Memento

– Stores internal state of the Originator object.
Protects against access by objects other than the originator. Mementos
effectively have two interfaces (methods).

• Originator
– Creates a Memento containing a snapshot of its current internal state

Uses the Memento to restore its internal state
• CareTaker

– Is responsible for the Memento’s safekeeping
Never operates on or examines the state of the Memento

• Generally a memento is responsible for storing a snapshot of the
internal state of another object. Mementos are usually dynamic
in nature

Object-Oriented Desgin Memento Pattern

George Blankenship 4

Memento Pattern George Blankenship 10

The Memento Pattern: Consequences

• Benefits
– Since object oriented programming dictates that objects should encapsulate their state it

would violate this law if objects’ internal variables were accessible to external objects. The
memento pattern provides a way of recording the internal state of an object in a separate
object without violating this law

– The memento eliminates the need for multiple creation of the same object for the sole
purpose of saving its state.

– The memento simplifies the Originator since the responsibility of managing Memento
storage is no longer centralized at the Originator but rather distributed among the
Caretakers

• Drawbacks
– The Memento object must provide two types of interfaces: a narrow interface to the

Caretaker and a wide interface to the Originator. That is, it must acts like a black box to
everything except for the class that created it.

– Using Mementos might be expensive if the Originator must store a large portion of its state
information in the Memento or if the Caretakers constantly request and return the
Mementos to the Originator.

Memento Pattern George Blankenship 11

The Memento Pattern: Implementation

• If you only need one Memento, combine the Originator
and Caretaker into one object.

• If you need many Mementos, store only incremental
changes. This will help to save space.

• Memento often used in conjunction with Command,
Iterator and Singleton design patterns.

• Implementation of the Memento design pattern varies
depending on the programming language. Implement
the Originator as a friend class to the Memento in C++.
Implement the Memento as an inner-class of the
Originator in Java.

