
Object-Oriented Desgin Mediator Pattern

George Blankenship 1

Mediator Pattern George Blankenship 1

CSCI 253

Object Oriented Design:
Mediator Pattern

George Blankenship

Mediator Pattern George Blankenship 2

Overview
Creational Patterns

Singleton 
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Mediator Pattern George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles, 
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability



Object-Oriented Desgin Mediator Pattern

George Blankenship 2

Mediator Pattern George Blankenship 4

The Mediator Pattern: The Problem
Define an object that encapsulates how a set of objects interact. Mediator 
promotes loose coupling by keeping objects from referring to each other 
explicitly, and it lets you vary their interaction independently. 

-The problem that 
commonly occurs in dialog 
boxes 
-If each object in the dialog 
takes responsibility for the 
dependencies it is 
associated with, the result 
is a highly coupled set of 
objects with low cohesion. 

Mediator Pattern George Blankenship 5

Mediator Relationship

• Prior to the use of a 
mediator there is a 
complex relationship 
between all of the 
classes

• The mediator 
disconnects the classes 
and presents a single 
target interface or set of 
targets

Mediator Pattern George Blankenship 6

Mediator and Façade
• Mediator is similar to Façade in that it abstracts 

functionality of existing classes. 
• Mediator abstracts/centralizes arbitrary communication 

between colleague objects, it routinely "adds value", and 
it is known/referenced by the colleague objects

• Mediator defines a multidirectional protocol). 
• Façade defines a simpler interface to a subsystem, it 

doesn't add new functionality, and it is not known by the 
subsystem classes

• Façade defines a unidirectional protocol where it makes 
requests of the subsystem classes but not vice versa



Object-Oriented Desgin Mediator Pattern

George Blankenship 3

Mediator Pattern George Blankenship 7

The Mediator Pattern: Structure

• A mediator is responsible for controlling and 
coordinating the interactions of a group of objects (not 
data structures) 

Mediator Pattern George Blankenship 8

The Mediator Pattern: Participants
• Mediator

– Defines an interface for communicating with Colleague objects
•

ConcreteMediator
– Implements cooperative behavior by coordinating Colleague objects

– Knows and maintains its colleagues
•

Colleague classes
– Each Colleague class knows its Mediator object

– Each colleague communicates with its mediator whenever it would have 
otherwise communicated with another colleagu

Mediator Pattern George Blankenship 9

The Mediator Pattern: Collaboration
• It limits subclassing

– The communication behavior would otherwise have to be distributed among 
many sub-classes of the widgets

– Instead, it’s all in the Mediator
• It decouples colleagues

– They don’t have to know how to interact with each other
• It simplifies object protocols

– A Mediator replaces many-to-many communication with a one-to-many 
paradigm

• It abstracts how objects cooperate
– How objects communicate is abstracted into the Mediator class

• It centralizes control
– As it’s all in the Mediator
– This can make the Mediator quite large and monolithic in a large system



Object-Oriented Desgin Mediator Pattern

George Blankenship 4

Mediator Pattern George Blankenship 10

The Mediator Pattern: Consequences

• Most of the complexity involved in managing 
dependencies is shifted from other objects to the 
Mediator object. This makes the other objects easier to 
implement and maintain.

• Colleague classes are more reusable because their core 
functionality is not interlinked with dependency-
handling code.

• Because dependency-handling code is usually 
application specific, Mediator classes are not usually 
reusable.

Mediator Pattern George Blankenship 11

The Mediator Pattern: Implementation

• Partition a system into pieces or small objects. 
• Centralize control to manipulate participating objects(a.k.a colleagues) 
• Clarify the complex relationship by providing a board committee.
• Limit subclasses. 
• Improve objects reusabilities. 
• Simplify object protocols. 
• The relationship between the control class and other participating classes is 

multidirectional. 
• Related patterns include 

– Facade, which abstracts a subsystem to provide a more convenient interface, and 
its protocol is unidirectional, whereas a mediator enables cooperative behavior 
and its protocol is multidirectional. 

– Command, which is used to coordinate functionality. 
– Observer, which is used in mediator pattern to enhance communication. 


