
Object-Oriented Design Java Review - Part C

George Blankenship 1

Java Review - Part C George Blankenship 1

CSCI 253

Object Oriented Design:
Java Review – OOP
George Blankenship

Java Review - Part C George Blankenship 2

Object Oriented Programming
(OOP)

• OO Principles
– Abstraction
– Encapsulation

• Abstract Data Type (ADT)
– Implementation independent interfaces
– Data and operations on data

• Java

Java Review - Part C George Blankenship 3

Overview
• Objects & class
• References & alias
• “this” & “super” reference
• Constructor & initialization block
• Garbage collection & destructor
• Modifiers

– Public, Private, Protected
– Static
– Final

Object-Oriented Design Java Review - Part C

George Blankenship 2

Java Review - Part C George Blankenship 4

Object & Class
• Object

– Abstracts away (data, algorithm) details
– Encapsulates data
– Instances exist at run time

• Class
– Blueprint for objects (of same type)
– Exists at compile time

Java Review - Part C George Blankenship 5

References & Aliases
• Reference

– A way to get to an object, not the object itself
– All variables in Java are references to objects

• Alias
– Multiple references to same object
– “X == Y” operator tests for alias
– “X.equals(Y)” tests contents of object (potentially)

Java Review - Part C George Blankenship 6

References & Aliases – Issues
• Copying

– References
X = new Object();
Y = X; // Y refers to same object as X

– Objects
X = new Object();
Y = X.clone(); // Y refers to different object

• Modifying objects
X = new Object();
Y = X;
X.change(); // modifies object for Y

Object-Oriented Design Java Review - Part C

George Blankenship 3

Java Review - Part C George Blankenship 7

“this” Reference
• Reserved keyword
• Refers to object through which method was

invoked
• Allows object to refer to itself
• Use to refer to instance variables of object

Java Review - Part C George Blankenship 8

Inheritance
• Definition

– Relationship between classes when state and behavior
of one class is a subset of another class

• Terminology
– Superclass / parent ⇒ More general class
– Subclass ⇒ More specialized class

• Forms a class hierarchy
• Helps promote code reuse

Java Review - Part C George Blankenship 9

“super” Reference
• Reserved keyword
• Refers to superclass
• Allows object to refer to methods and

encapsulated data in superclass
• Examples

– super.x // accesses x in superclass
– super() // invokes constructor in superclass
– super.foo() // invokes method foo in superclass

Object-Oriented Design Java Review - Part C

George Blankenship 4

Java Review - Part C George Blankenship 10

Constructor
• Method invoked when object is instantiated
• Helps initialize object
• Method with same name as class w/o return

type
• Implicitly invokes constructor for

superclass
– If not explicitly included

Java Review - Part C George Blankenship 11

Constructor – Example
class foo {

foo() { … } // constructor for foo
}
class bar extends foo {

bar() { // constructor for bar
// implicitly invokes foo() here

…
}

}
class bar2 extends foo {

bar2() { // constructor for bar
super(); // explicitly invokes foo() here

}
}

Java Review - Part C George Blankenship 12

Initialization Block

• Definition
– Block of code used to initialize static & instance

variables for class

• Motivation
– Enable complex initializations for static variables

• Control flow
• Exceptions

– Share code between multiple constructors for same
class

Object-Oriented Design Java Review - Part C

George Blankenship 5

Java Review - Part C George Blankenship 13

Variable Initialization

• Variables may be initialized
– At time of declaration
– In initialization block
– In constructor

• Order of initialization
– Declaration, initialization block

• (in the same order as in the class definition)

– Constructor

Java Review - Part C George Blankenship 14

Garbage Collection
• Concepts

– All interactions with objects occur through reference
variables

– If no reference to object exists, object becomes garbage
(useless, no longer affects program)

• Garbage collection
– Reclaiming memory used by unreferenced objects
– Periodically performed by Java
– Not guaranteed to occur
– Only needed if running low on memory

Java Review - Part C George Blankenship 15

Destructor

• Method with name finalize()
• Returns void
• Contains action performed when object is

freed
• Invoked automatically by garbage collector

– Not invoked if garbage collection does not
occur

• Usually needed only for non-Java methods

Object-Oriented Design Java Review - Part C

George Blankenship 6

Java Review - Part C George Blankenship 16

Method Overloading

• Description
– Same name refers to multiple methods

• Sources of overloading
– Multiple methods with different parameters

• Constructors frequently overloaded

– Redefine method in subclass

Java Review - Part C George Blankenship 17

Package

• Definition
– Group related classes under one name

• Helps manage software complexity
– Separate namespace for each package

• Package name added in front of actual name

– Put generic / utility classes in packages
• Avoid code duplication

Java Review - Part C George Blankenship 18

Package – Import
• Import

– Make classes from package available for use
– Java API

• java.* (core)
• javax.* (optional)

• Example
import java.util.Random; // import single class
import java.util.*; // all classes in package
… // class definitions

Object-Oriented Design Java Review - Part C

George Blankenship 7

Java Review - Part C George Blankenship 19

Scope

• Part of program where a variable may be
referenced

• Determined by location of variable
declaration
– Boundary usually demarcated by { }

Java Review - Part C George Blankenship 20

Modifier

• Java keyword (added to definition)
• Specifies characteristics of a language

construct
• (Partial) list of modifiers

– Public / private / protected
– Static
– Final
– Abstract

Java Review - Part C George Blankenship 21

Visibility Modifier

• Properties
– Controls access to class members
– Applied to instance variables & methods

• Four types of access in Java
– Public Most

visible
– Protected
– Package

• Default if no modifier specified
– Private Least visible

Object-Oriented Design Java Review - Part C

George Blankenship 8

Java Review - Part C George Blankenship 22

Visibility Modifier – Scope
• “public”

– Referenced anywhere (i.e., outside package)

• “protected”
– Referenced within package, or by subclasses outside package

• None specified (package)
– Referenced only within package

• “private”
– Referenced only within class definition
– Applicable to class fields & methods

Java Review - Part C George Blankenship 23

Visibility Modifier - Use
• For instance variables

– Should usually be private to enforce encapsulation
– Sometimes may be protected for subclass access

• For methods
– Public methods – provide services to clients
– Private methods – provide support other methods
– Protected methods – provide support for subclass

Java Review - Part C George Blankenship 24

Modifier – Static
• Static variable

– Single copy for class
– Shared among all objects of class

• Static method
– Can be invoked through class name
– Does not need to be invoked through object
– Can be used even if no objects of class exist
– Can not reference instance variables

Object-Oriented Design Java Review - Part C

George Blankenship 9

Java Review - Part C George Blankenship 25

Modifier – Final
• Final variable

– Value can not be changed
– Must be initialized in every constructor
– Attempts to modify final are caught at compile time

• Final static variable
– Used for constants

• Final method
– Method can not be overloaded by subclass
– Private methods are implicitly final

• Final class
– Class can not be a superclass (extended)
– Methods in final class are implicitly final

• Using final classes
– Prevents inheritance / polymorphism
– May be useful for

• Security
• Object oriented design

Java Review - Part C George Blankenship 26

Modifier – Abstract
• Description

– Represents generic concept
– Can not be instantiated

• Abstract class
– Placeholder in class hierarchy
– Can be partial description of class
– Can contain non-abstract methods
– Required if any method in class is abstract

