
Object-Oriented Desgin xxx Pattern

George Blankenship 1

xxx Pattern George Blankenship 1

CSCI 253

Object Oriented Design:
Iterator Pattern

George Blankenship

xxx Pattern George Blankenship 2

Overview
Creational Patterns

Singleton
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

xxx Pattern George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability

Object-Oriented Desgin xxx Pattern

George Blankenship 2

xxx Pattern George Blankenship 4

-
-

Also known as : Cursor

First
Next

IsDone?
CurrentItem

Provide a way to access the elements of an aggregate
object sequentially without exposing its underlying
representation

• support multiple types of
traversals of aggregate
objects
• provide a uniform interface
for traversing aggregate
structures (polymorphic
iteration)

(a b c d e)

a b c d e

a
b

dc
e

The Iterator Pattern: The Problem

xxx Pattern George Blankenship 5

Channel Changer

xxx Pattern George Blankenship 6

Iterator Operation

• Add a create_iterator() method to the "collection"
class, and grant the "iterator" class privileged access.

• Design an "iterator" class that can encapsulate
traversal of the "collection" class.

• Clients ask the collection object to create an iterator
object.

• Clients use the first(), is_done(), next(), and
current_item() protocol to access the elements of the
collection class.

Object-Oriented Desgin xxx Pattern

George Blankenship 3

xxx Pattern George Blankenship 7

Linked List
class ListEntry {
protected:

ListEntry *Next; // next entry in the liLked ist (orÀN�¦)
void *Trace; // pointer to list head if queued (or NUL)

public:
ListEntry(void);
~ListEntry(void);
void SetNextEntry(ListEntry *Entry); // set next entry in list
ListEntry *GetNextEntry(void); // get next entry in list

};

class ListHead {
protected:

ListEntry *Head, // start of the linked list (or NUL)
*Tail; // end of the linked list (or NUL)

public:
ListHead(void) {Head = Tail = NUL;}
~ListHead(void);
void AddEntry(ListEntry *Entry); // add an entry to linked list
ListEntry *RemoveFirstEntry(void); // remove the first entry in the list
ListEntry *GetFirstEntry(void); // get first entry in the l st

};

xxx Pattern George Blankenship 8

The Iterator Pattern: Structure

xxx Pattern George Blankenship 9

The Iterator Pattern
Participants & Collaboration

• Iterator
– Defines an interface for accessing and traversing elements

• ConcreteIterator
– Implements the iterator interface
– Keeps track of the current position in the traversal of the

aggregate
• Aggregate

– Defines an interface for defining an Iterator object
• ConcreteAggregate

– Implements the iterator creation interface to return an instance
of the proper ConcreteIterator

• A ConcreteIterator keeps track of the current object in the
aggregate and can compute the succeeding object in the
traversal

Object-Oriented Desgin xxx Pattern

George Blankenship 4

xxx Pattern George Blankenship 10

The Iterator Pattern: Collaboration

xxx Pattern George Blankenship 11

The Iterator Pattern Consequences

• Supports variation in the traversal of an aggregate:
complex aggregates can be traversed in many ways, iterators
make it easy to change the traversal algorithm by just using a
different iterator instance

• Simplifies the Aggregate interface: the Aggregate
interface is not to be cluttered with various types of traversal
support

• More than one traversal can be pending on the same
aggregate: an iterator keeps track of its own traversal state,
therefor more than one traversal can be in progress at the same
time

xxx Pattern George Blankenship 12

The Iterator Pattern Implementation
Control

• An internal iterator has full control over the complete iteration, the clients
hands an operation to perform and the iterator applies that operation to each
element in the aggregate. With an external iterator the client controls the
iteration, i.e. the client advances the traversal by requesting the next element
explicitly. External iterators are more flexible (compare two collections on
equality is practically impossible with internal operators). Internal iterators
are easier to use but are weak in languages that do not support functions as
first class objects.

• The iterator can be responsible for the traversal algorithm in which case it is
easy to use different iteration algorithms on the same aggregate and to use the
same algorithm on different aggregates. The aggregate itself can be
responsible for the traversal algorithm and the iterator just stores the state of
the iteration (cursor)

Object-Oriented Desgin xxx Pattern

George Blankenship 5

xxx Pattern George Blankenship 13

The Iterator Pattern Implementation
Robustness and Polymorphism

• A robust iterator ensures that insertion and removals do not interfere
with traversal (and it does so without copying the aggregate). Robust
iterators can for example be implemented by registering the iterators
with the aggregate and make the aggregate adjust the internal state of
the iterators upon insertion or deletion of elements

• Polymorphic have a cost, they require the iterator object to be allocated
dynamically by a factory method. Hence if there is no need for
polymorphism use concrete iterators which can be allocated on the
stack. Polymorphic iterators have another drawback, they must be
deleted by the client code which is error prone. The proxy pattern offers
a solution here: use a stack allocated proxy for the real iterator object,
make the proxy ensure proper clean up in its destructor so that when the
proxy goes out of scope the iterator object is deleted

xxx Pattern George Blankenship 14

The Iterator Pattern Implementation
Access and Null Entities

• An iterator can be viewed as an extension of the aggregate that
created it. The iterator and the aggregate are tightly coupled. In
they can be made friends so that the aggregate does not have to
define operations with the sole purpose of making the traversal
efficient. Adding new traversals becomes difficult since the
aggregates interface has to change then to let in another friend.

• A Null Iterator is a degenerated iterator which is helpful for
handling boundery conditions. NullIterators make traversing
tree-like recursive structures (like Composites) easier. At each
point in the traversal the current node is asked for the iterator for
its children. An aggregate element returns a concrete iterator, a
leaf element a NullIterator

