
Object-Oriented Design Introduction

George Blankenship 1

Introduction George Blankenship 1

CSCI 253
Object Oriented Design:

Object Oriented Design and
Programming in Java
George Blankenship

Introduction George Blankenship 2

Outline

• Background
– Rationale for the course
– Why object oriented programming?

• OOP principles
– Objects
– Object oriented design

• Java

Introduction George Blankenship 3

Background
• Computer Science is not (just) programming
• Java is a tool to teach programming and

problem solving concepts
• So if you know everything in Java you still

need to stay awake
• Will be introducing many advanced topics

along with the background material

Object-Oriented Design Introduction

George Blankenship 2

Introduction George Blankenship 4

Rationale

• Programming is based up the use of a
language just as any other human to
exchange information between two
intelligent entities

• The exchange must reflect an accurate
intention of the source is a form that is
intelligible and understandable by the
recipient

Introduction George Blankenship 5

Study of Grammar

• Man has learned that the grammar of a
language must be studied as a separate
discipline

• Man has also learned that selected
constructs of a language convey information
more effectively than other constructs

• These two observations are the basis of
writing classes in any language

Introduction George Blankenship 6

Problem Solving

• The key to designing a solution is breaking it
down into manageable pieces

• When writing software, we design separate pieces
that are responsible for certain parts of the solution

• An object-oriented approach lends itself to this
kind of solution decomposition

• We will dissect our solutions into pieces called
objects and classes

Object-Oriented Design Introduction

George Blankenship 3

Introduction George Blankenship 7

Object-Oriented Programming

• Objects can be used effectively to represent real-
world entities

• We try to define all our data as objects, and define
programs to work on those objects

• For instance, an object might represent a particular
employee in a company

• Each employee object handles the processing and
data management related to that employee

Introduction George Blankenship 8

Objects

• An object has:
– state - descriptive characteristics
– behaviors - what it can do (or what can be done to it)

• The state of a bank account includes its current
balance

• The behaviors associated with a bank account
include the ability to make deposits and
withdrawals

• Note that the behavior of an object might change
its state

Introduction George Blankenship 9

Reusability
• Object oriented design

encourages the design
of reusable components

• Vehicle is a
general definition
– A base object defines common attributes and

behaviors
– The definition is reused to define unique objects

that have the common attributes and behaviors
• Mini-van as a more specific object

Public class miniVan {
String manufacturer;
String model;
int year;
Color color;

}

Object-Oriented Design Introduction

George Blankenship 4

Introduction George Blankenship 10

Classes
• A class represents a concept, and an object

represents the embodiment of that concept
• An object is defined by a class (blueprint)
• Multiple objects can be created from the same

class
• Attributes define the state of the object
• Methods are the access point to effect the

behavior of the object

Introduction George Blankenship 11

Attributes

• Internal to the class
– Arguments for/against to make the attributes

visible outside the class
• Define the state of an instantiation
• State changes are made when an

instantiation receives a message
– If attributes are hidden, messages can only be

received via externalized methods

Introduction George Blankenship 12

Methods

• Define behavioral actions
• Action invoked by the receipt of a message
• The externalized methods of a class define

the API of the class
• The parameters of an invocation are

considered to be a message defining the
details of the desired behavior.

Object-Oriented Design Introduction

George Blankenship 5

Introduction George Blankenship 13

Instantiation

• Defined classes are used to create execution time
object (instantiation of the class)

• The constructor method is responsible for
initializing the object

• new creates an instance of the class
• The execution time name of the object is the

handle to reference the object
– name.attribute is a reference to an attribute
– name. method(<message>) is an invocation of a method

passing the message

Introduction George Blankenship 14

Example

• Class Test
– methods: Test, behaviorOne(parm1, parm2),

behaviorTwo(parm1,parm3)
• Instantiation of an object

– Test testing = new Test();
• Referencing the object

– testing.behaviorOne(7,”testing”);
– testing.behaviorTwo(37,59);

Introduction George Blankenship 15

Inheritance
• One class can be used to derive another via

inheritance
• Classes can be organized into hierarchies

Object-Oriented Design Introduction

George Blankenship 6

Introduction George Blankenship 16

Encapsulation

• Attributes of the class are objects from other
classes

• The methods of the class create a new API hiding
the encapsulated objects’ API

• Class MainGUI encapsulates the complex AWT
classes

• MainGUI API presents append(), addMenu(),
addMenuItem(), message(), getClock()

Introduction George Blankenship 17

Object Oriented Design

• Problem space broken into distinct components
(classes)

• Each component solves a portion of the problem
• Communication protocol validation (SerialLink)

– AnswerConnection
– DialConnection
– EchoConnection
– ConfigurationPanel
– SerialConnection

Introduction George Blankenship 18

Design Consideration

• Creation of objects
– A class that just creates the objects used in the solution
– Standardizes the creation of objects

• Structure of solution components
– Templates for the organization of the solution objects to

simplify, clarify and standardize the organization

• Behavior of the solution components
– Templates for the behavioral properties of the solution

objects to simplify, clarify and standardize the behavior

Object-Oriented Design Introduction

George Blankenship 7

Introduction George Blankenship 19

Java Language

• A programming language specifies the words and
symbols that we can use to write a program

• A programming language employs a set of rules
that dictate how the words and symbols can be put
together to form valid program statements

• The Java programming language was created by
Sun Microsystems, Inc. and introduced in 1995.

Introduction George Blankenship 20

Java Translation

• The Java compiler translates Java source code into
a special representation called byte code

• Java byte code is not the machine language for
any traditional CPU

• Another software tool, called an interpreter,
translates Byte code into machine language and
executes it

• Therefore the Java compiler is not tied to any
particular machine

• Java is considered to be architecture-neutral

Introduction George Blankenship 21

Java Code
• Basic unit of Java code is the object

– Software bundle of related state and behavior
– Programming problem is mapped into the interactions of objects

• Objectives
– Modularity
– Information-hiding
– Code re-use
– Pluggability and debugging ease

• Fundamental items of an object
– Attributes (properties, fields) – object state
– Methods - modification of object state

Object-Oriented Design Introduction

George Blankenship 8

Introduction George Blankenship 22

API Documents

• Unlike other languages, Java has many
libraries bundled by default

• Application Programming Interface (API)
docs, are the view given to the programmer

• Encouragement of code re-use
• Example:

– java.lang.String
– java.util.StringTokenizer

