
Object-Oriented Desgin Interpreter Pattern

George Blankenship 1

Interpreter Pattern George Blankenship 1

CSCI 253

Object Oriented Design:
Interpreter Pattern

George Blankenship

Interpreter Pattern George Blankenship 2

Overview
Creational Patterns

Singleton
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Interpreter Pattern George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability

Object-Oriented Desgin Interpreter Pattern

George Blankenship 2

Interpreter Pattern George Blankenship 4

The Interpreter Pattern: The Problem
he basic idea is to implement a specialized computer language
to rapidly solve a defined class of problems. Specialized
languages often let a problem be solved several to several
hundred times more quickly than a general purpose language
would permit.

-
-

Interpreter Pattern George Blankenship 5

Calculator Grammar
goal -> expr&END
expr -> factor&expr-tail
expr-tail ->^

expr-tail -> '+' & expr
expr-tail -> '-' & expr

factor -> term & factor-tail

factor-tail ->^
factor-tail ->'*'&factor
factor-tail ->'/'&factor

term -> number
term -> ij
term -> '(' & expr &')'

tokens: (,), num, ij, +, -, *, /, END

Interpreter Pattern George Blankenship 6

Tree (Calculator)

Object-Oriented Desgin Interpreter Pattern

George Blankenship 3

Interpreter Pattern George Blankenship 7

The Interpreter Pattern: Structure

Interpreter Pattern George Blankenship 8

The Interpreter Pattern: Participants
• AbstractExpression (RegularExpression)

– declares an abstract Interpret operation that is common to all nodes in the abstract syntax tree.
• TerminalExpression (LiteralExpression)

– implements an Interpret operation associated with terminal symbols in the grammar.
– an instance is required for every terminal symbol in a sentence.

• NonterminalExpression (AlternationExpression, RepetitionExpression, SequenceExpressions)
– one such class is required for every rule R ::= R1 R2 ... Rn in the grammar.
– maintains instance variables of type AbstractExpression for each of the symbols R1 … Rn.
– implements an Interpret operation for nonterminal symbols in the grammar. Interpret typically

calls itself recursively on the variables representing R1 … Rn.
• Context

– contains information that's global to the interpreter.
• Client

– builds (or is given) an abstract syntax tree representing a particular sentence in the language
that the grammar defines. The abstract syntax tree is assembled from instances of the
NonterminalExpression and TerminalExpression classes.

– invokes the Interpret operation.

Interpreter Pattern George Blankenship 9

The Interpreter Pattern: Collaboration
• Decide if a "little language" offers a justifiable return on investment.
• Define a grammar for the language.
• Map each production in the grammar to a class.
• Organize the suite of classes into the structure of the Composite

pattern.
• Define an interpret (Context) method in the Composite hierarchy.
• The Context object encapsulates the current state of the input and

output as the former is parsed and the latter is accumulated. It is
manipulated by each grammar class as the "interpreting" process
transforms the input into the output.

Object-Oriented Desgin Interpreter Pattern

George Blankenship 4

Interpreter Pattern George Blankenship 10

The Interpreter Pattern: Consequences
• Nodes are loosely coupled, since they are oblivious to the structure of the tree and the

workings of other nodes, except through the traversal state. Parent nodes merely
delegate work to children; they do not care how that work is carried out.

• It is easy to add new node classes (primitives or combination rules). This is partly
because of the loose coupling and partly because the implementation of each node is
simple. The required complexity comes from the tree structure, not the individual
nodes.

• The nodes can support different actions, so that the same tree can be used for
matching, code generation, evaluation, partial evaluation, pretty printing, conversion,
type checking, dependency analysis, estimating resource requirements, etc.

• Adding new actions is hard since every node class must support it with a method. The
Visitor pattern can help.

• The tree structure can be modified at run-time. A search-and-replace action can be
used for transforming one tree into another.

• One-pass tree traversal is often not the most efficient approach to interpretation.
However, traversal can be used to compile the problem into a better representation for
the particular action.

Interpreter Pattern George Blankenship 11

The Interpreter Pattern: Implementation

• Considered in its most general form, nearly every use of the
Composite pattern will also contain the Interpreter pattern. But
the Interpreter pattern should be reserved for those cases in
which you want to think of this class hierarchy as defining a
language. Interpreter can use State to define parsing contexts.

• The abstract syntax tree of Interpreter is a Composite (therefore
Iterator and Visitor are also applicable).

• Terminal symbols within Interpreter's abstract syntax tree can be
shared with Flyweight.

• The pattern doesn't address parsing. When the grammar is very
complex, other techniques (such as a parser) are more
appropriate.

