
Object-Oriented Desgin Flyweight Pattern

George Blankenship 1

Flyweight Pattern George Blankenship 1

CSCI 253

Object Oriented Design:
Flyweight Pattern

George Blankenship

Flyweight Pattern George Blankenship 2

Overview
Creational Patterns

Singleton
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Flyweight Pattern George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability

Object-Oriented Desgin Flyweight Pattern

George Blankenship 2

Flyweight Pattern George Blankenship 4

The Flyweight Pattern: The Problem
Some applications benefit from using objects in their
design but a naïve implementation is prohibitively
expensive because of the large number of objects

• use an object for each
character in a text
document editor
• use a layout object for
each widget in a GUI

h a l l o

Column

Row

Character

Flyweight Pattern George Blankenship 5

Page Objects

Flyweight Pattern George Blankenship 6

Page Classes

Object-Oriented Desgin Flyweight Pattern

George Blankenship 3

Flyweight Pattern George Blankenship 7

Object Hierarchy

Flyweight Pattern George Blankenship 8

Flyweight Objects

Flyweight Pattern George Blankenship 9

Java String
• Java Strings are flyweighted by the compiler wherever possible
• Can be flyweighted at runtime with the intern method
public class StringTest {

public static void main(String[] args) {
String fly = "fly", weight = "weight";
String fly2 = "fly", weight2 = "weight";

System.out.println(fly == fly2); // true
System.out.println(weight == weight2); // true

String distinctString = fly + weight;
System.out.println(distinctString == "flyweight"); // false

String flyweight = (fly + weight).intern();
System.out.println(flyweight == "flyweight"); // true

}
}

Object-Oriented Desgin Flyweight Pattern

George Blankenship 4

Flyweight Pattern George Blankenship 10

StateVariable
• public class StateVariable extends ListEntry {
• public StateVariable(Trace t, StateMachine f, String s, StateVariable r, long ms) {
• public StateMachine getFSM() {return fsm;}
• public int getIndex() {return index;}
• public String getDescription() {return description;}
• public void setTime(long t) {time = t;} // set start time of state
• public long getTime() {return time;} // fetch start time of state
• public long getNormalTimeout() {return normalTimeout;}// fetch normal timeout of state
• public void setTimeout(long t) {timeout=t;} // change the timeout for the state
• public long getTimeout() {return timeout;} // fetch the timeout for the state
• public void setMissed(boolean b) {missed = b;}
• public boolean wasMissed() {return missed;} // state missed (timeout occurred)
• public boolean setNextState(StateVariable s) {
• public StateVariable getNextState() {
• public String getShortSummary() {
• public String getSummary() {

Flyweight Pattern George Blankenship 11

The Flyweight Pattern Applicability
• Apply flyweight when ALL of the following are true:

– An application uses a large number of objects
– Storage cost is high because of the quantity of objects
– Most objects can be made extrinsic
– Many groups of objects can be replaced by relatively few shared

objects once extrinsic state is removed
– The application does not depend on object identity

Flyweight Pattern George Blankenship 12

The Flyweight Pattern Participants
• Flyweight

– Declares an interface through which flyweights can receive and
act upon extrinsic state

• Concrete Flyweight
– Implements the flyweight interface and adds storage for intrinsic

state
– A concrete flyweight object must be sharable, i.e. all state must

be intrinsic
• Unshared Concrete Flyweight

– Not all flyweights subclasses need to be shared, unshared
concrete flyweight objects have concrete flyweight objects at
some level in the flyweight object structure

Object-Oriented Desgin Flyweight Pattern

George Blankenship 5

Flyweight Pattern George Blankenship 13

The Flyweight Pattern Participants
• Flyweight Factory

– Creates and manages flyweight objects
– Ensures that flyweights are shared properly; when a client

requests a flyweight the flyweight factory supplies an
existing one from the pool or creates one and adds it to the
pool

• Client
– Maintains a reference to flyweight(s)
– Computes or stores the extrinsic state of flyweight(s)

Flyweight Pattern George Blankenship 14

Sequence Diagram

Flyweight Pattern George Blankenship 15

FlyweightFactory

Object-Oriented Desgin Flyweight Pattern

George Blankenship 6

Flyweight Pattern George Blankenship 16

The Flyweight Pattern
Collaborations

• State that a flyweight needs to function must be
characterised as either intrinsic or extrinsic. Intrinsic state
is stored in the concrete flyweight object.; extrinsic state
is stored or computed by client objects. Clients pass this
state to the flyweight when invoking operations.

• Clients should not instantiate concrete flyweights directly.
Clients must obtain concrete flyweight objects exclusively
from the flyweight factory object to enshure that they are
shared properly

Flyweight Pattern George Blankenship 17

FlyweightFactory Participants

Flyweight Pattern George Blankenship 18

The Flyweight Pattern
Consequences

• - Flyweights may introduce run-time costs associated with
transferring, finding, and/or computing extrinsic state

• + The increase in run-time cost are offset by storage savings
which increase
– as more flyweights are shared
– as the amount of intrinsic state is considerable
– as the amount of extrinsic state is considerable but can be computed

• - The flyweight pattern is often combined with the composite
pattern to build a graph with shared leaf nodes. Because of the
sharing, leaf nodes cannot store their parent which has a major
impact on how the objects in the hierarchy communicate

Object-Oriented Desgin Flyweight Pattern

George Blankenship 7

Flyweight Pattern George Blankenship 19

The Flyweight Pattern
Implementation

• Removing extrinsic state:
– Identify extrinsic state and remove it from the shared objects
– Removing extrinsic state will not help if there are as many different kinds

of extrinsic state as there are objects before sharing
– Ideally extrinsic state can be computed from a separate object structure

with far smaller storage requirements
• Managing shared objects:

– Use an associative store with the flyweight factory to let clients locate a
particular flyweight

– Some form of reference counting or garbage collection is needed to
reclaim a flyweight’s storage when it is no longer needed

– When the number of flyweights is small and fixed, consider to initialise
the pool and keep the flyweights around permanently

