
Object-Oriented Design Factory Method Pattern

George Blankenship 1

Factory Method Pattern George Blankenship 1

CSCI 253

Object Oriented Design:
Factory Method Pattern

George Blankenship

Factory Method Pattern George Blankenship 2

Overview
Creational Patterns

Singleton
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Factory Method Pattern George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability

Object-Oriented Design Factory Method Pattern

George Blankenship 2

Factory Method Pattern George Blankenship 4

The Factory Method Pattern: The
Problem

Define an interface for creating an object but let
subclasses decide which class to instantiate

Framework (toolkit) uses
abstract classes to define
and maintain
relationships between
objects and is
responsible for creating
the objects as well

Also known as : Virtual constructor

Factory Method Pattern George Blankenship 5

Factory Method Mechanics

• x is a base class and classes xy and xz are derived from it.
• The factory is a class that decides which of these subclasses to return depending on

the arguments you give it.
• The getClass method receives the value abc, and that returns an instance of the class

x.
• Each instance has the same methods, but different implementations.
• The instance decision is entirely embedded in the factory and could be very complex

but is often quite simple; the factory manufactures the object.

Factory Method Pattern George Blankenship 6

Entry Form

• Entry form that allows the user to enter a name
either as “firstname lastname” or “lastname,
firstname”

• Simplifying assumption that the name order is
indicated by the existence of a comma between
the last and first name.

Object-Oriented Design Factory Method Pattern

George Blankenship 3

Factory Method Pattern George Blankenship 7

Factory Method Class
class NameFactory {
// returns an instance of LastFirst or FirstFirst
// depending on whether a comma is found

static public Namer getNamer(String entry) {
int i = entry.indexOf(","); //comma determines name order
if (i>0)

return new LastFirst(entry); //return one class
else

return new FirstFirst(entry); //or the other
}

}

Factory Method Pattern George Blankenship 8

Factory Method Worker Classes
class FirstFirst extends Namer { //split first last

public FirstFirst(String s) {
int i = s.lastIndexOf(" "); //find sep space
if (i > 0) {

first = s.substring(0, i).trim(); //left is first name
last =s.substring(i+1).trim(); //right is last name

} else {
first = “”; // put all in last name
last = s; // if no space

}
}

}
class LastFirst extends Namer { //split last, first

public LastFirst(String s) {
int i = s.indexOf(","); //find comma
if (i > 0) {

last = s.substring(0, i).trim(); //left is last name
first = s.substring(i + 1).trim(); //right is first name

} else {
last = s; // put all in last name
first = ""; // if no comma

}
}

}

Factory Method Pattern George Blankenship 9

Name Divider Example

Callback for “Enter name:”
Namer name =

Name.getName(EnterName.getText())
name is LastFirst object
FirstName.setText(name.firstName());
LastName.setText(name.lastName());

Object-Oriented Design Factory Method Pattern

George Blankenship 4

Factory Method Pattern George Blankenship 10

GUI Widgets

Factory Method Pattern George Blankenship 11

Toolset Generation

Factory Method Pattern George Blankenship 12

Factory Method Classes

• Creator is parent
– May use static method FactoryMethod()
– May be instantiated as a Factory object

• Set of ConcreateCreator classes used to create ConcreteProduct (objects)

Object-Oriented Design Factory Method Pattern

George Blankenship 5

Factory Method Pattern George Blankenship 13

The Factory Method Pattern
Consequences

• + Eliminates the need to bind application specific
classes into your code

• - Clients might have to subclass the Creator class just
to create a particular ConcreteProduct object

• + Provides hooks for subclasses: the factory method gives
subclasses a hook for providing an extended version of an object

• + Connects parallel class hierarchies: a clients can use
factory methods to create a parallel class hierarchy (parallel
class hierarchies appear when objects delegate part of their
responsibilities to another class)

Factory Method Pattern George Blankenship 14

Factory Method Pattern Implementation

• Two major varieties are
– (1) the Creator class is an abstract class and does not provide an

implementation for the factory method it declares; the subclasses are
required to provide the implementation

– (2) the Creator class is a concrete class and provides a default for the
implementation of the factory method; the factory method just brings the
flexibility for subclasses to create different objects

• Factory Methods can be parameterised with something that
identifies the object to create (the body is then a conditional);
overriding a parameterised factory method makes it easy to
selectively extend or change the products that are created

• Use naming conventions that make clear that you are using
factory methods

