
Object-Oriented Desgin Facade Pattern

George Blankenship 1

Facade Pattern George Blankenship 1

CSCI 253

Object Oriented Design:
Façade Pattern

George Blankenship

Facade Pattern George Blankenship 2

Overview
Creational Patterns

Singleton 
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Facade Pattern George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles, 
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability



Object-Oriented Desgin Facade Pattern

George Blankenship 2

Facade Pattern George Blankenship 4

The Facade Pattern: The Problem
Provide a unified higher level interface to a set of 
interfaces in a subsystem to make the subsystem 
easier to use

• provide a simple interface 
to a complex subsystem
• decouple a subsystem from 
clients and other subsystems
• create layered subsystems 
by providing an interface to 
each subsystem level

facade

Client classes

Subsystem classes

Facade Pattern George Blankenship 5

Compiler

Facade Pattern George Blankenship 6

Virtual Memory



Object-Oriented Desgin Facade Pattern

George Blankenship 3

Facade Pattern George Blankenship 7

ServerSocket
• public ServerSocket(int port, String portType, HomeTelehealth engine, MessageEngine messageEngine) {
• public void onClose(int transportId) {
• public void onError(int errorId, String errorText) {
• public void onMessage(int transportId, String message) {

HL7Connection connection = HL7Connection.findConnectionByTransport(transportId);
if(connection!=null) {

traceMessage(message,"server received from "+connection.getAddressA()+" on "+portType);
try {messageEngine.parseMessage(message,null,connection);
} catch (ChameleonException e) {

Trace.exception(CODE_FILE,e," (onMessage) exception while parsing");
messageEngine.messageError(207,"Message processing internal error");
engine.sendAcceptACK(connection);
return;

} if(connection.hasActiveFSM()) {
connection.getFSM().execute(Constants.FSM_MESSAGE_RECEIVED);

} else {engine.sendApplicationACK(connection);}
} else {traceMessage(message,"server received for server transport ("+String.valueOf(transportId)+")");}

}
• public Hl7ClientSocket onNewConnection(int transportId) {
• public void onTransportError(int transportId, int errorId,String errorText) {

Facade Pattern George Blankenship 8

The Facade Pattern 
Participants & Collaboration 

• Facade:
– Knows which subsystem classes are responsible for a request
– Delegates clients requests to appropriate subsystem objects

• Subsystems Classes 
– Implement the subsystem functionality
– Handle work assigned by the Facade object
– Have no knowledge of the Facade object; i.e. keep no reference 

to it
• Clients send their request to Facade which will then 

forward them to the appropriate subsystem object

Facade Pattern George Blankenship 9

The Façade Pattern: Structure



Object-Oriented Desgin Facade Pattern

George Blankenship 4

Facade Pattern George Blankenship 10

The Facade Pattern Consequences
• + Shields clients from subsystem components thereby 

reducing the number of objects that clients deal with 
thus making the subsystem easier to use

• + Promotes weak coupling between the subsystem and 
its clients allowing components of the subsystem to 
change without affecting the clients

• + Reduces compilation dependencies in large software 
systems

• + Does not prevent applications from using subsystem 
classes if they need to

Facade Pattern George Blankenship 11

The Facade Pattern Implementation
• The coupling between clients and subsystems can be 

reduced even further:
– by making Facade an abstract class with concrete subclasses 

for different implementations of a subsystem; this abstract 
coupling keeps clients from knowing which implementation 
of a subsystem it is they use

– by configuring a Facade object with different subsystem 
objects; to customise simply replace one or more of the 
subsystem objects

• Public versus Private subsystem classes: the façade is a 
part of the public interface of a subsystem together with the 
subsystem classes some clients have to access directly (very few
OO languages support the notion of private subsystem classes 
although it would be a very useful feature)


