
Object-Oriented Desgin Decorator Pattern

George Blankenship 1

Decorator Pattern George Blankenship 1

CSCI 253

Object Oriented Design:
Decorator Pattern

George Blankenship

Decorator Pattern George Blankenship 2

Overview
Creational Patterns

Singleton 
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Decorator Pattern George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles, 
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability



Object-Oriented Desgin Decorator Pattern

George Blankenship 2

Decorator Pattern George Blankenship 4

The Decorator Pattern: The Problem
You want to add responsibilities to individual objects 
dynamically and transparently without affecting other objects 

-Discrete simulator 
(FSM) describes 
simulation space as 
a map
-Each node of the map 
is a place (processing 
moves from place to 
place)
-Type of node defines 
processing

Also known as : wrapper

node
node

node

node

node

node

Decorator Pattern George Blankenship 5

Node

• A node of the simulation map
• Nodes are linked together to define paths that an 

object might follow
• Display() display information about the node
• Enter(object) place object on enter queue
• Exit(object) place object on exit queue
• Visit(object) place object on visit queue

Decorator Pattern George Blankenship 6

GenerateVisitor

• The generator node creates objects that visit other nodes
• public GenerateVisitor(String n, int i, NodeRoute r, 

QueueDescriptor q)
• public void display()
• public boolean epilogue(int time) // create new objects
• public void destroy()



Object-Oriented Desgin Decorator Pattern

George Blankenship 3

Decorator Pattern George Blankenship 7

Replicate

• The replicator node duplicate objects that visit 
other nodes

• public Replicate(String n, int i, NodeRoute r, 
QueueDescriptor q)

• public void display()
• public boolean processObject(MobileObject

template, int time) // clone objects
• public void destroy()

Decorator Pattern George Blankenship 8

Route

• The route change node changes the route of an 
object

• public Route(String n, int i, NodeRoute r, 
QueueDescriptor q)

• public void display()
• public boolean processObject(MobileObject o, 

int time) // change the route
• public void destroy()

Decorator Pattern George Blankenship 9

StateMachine States

• currentState = 
– new StateVariable(getName()+" current state");

• initialState = 
– new StateVariable(getName()+" initial state");

• endState = 
– new StateVariable(getName()+" end state");

• errorState = 
– new StateVariable(getName()+" error state");



Object-Oriented Desgin Decorator Pattern

George Blankenship 4

Decorator Pattern George Blankenship 10

EchoConnection

• public void completed()
– Process ending states (normal/error)
– Close connection

• public boolean execute()
– Execute state machine (state & input)
– processInitialState() 
– processWaitDSRState()
– processWaitCTSState()
– processWaitXONState()
– processWaitInputState()

Decorator Pattern George Blankenship 11

DialConnection
• public void completed()

– Process ending states (normal/error)
– Close connection

• public boolean execute()
– Execute state machine (state & input)
– processInitialState() 
– processWaitDSRState()
– processWaitCTSState()
– processWaitXONState()
– processResetStringSendState()
– processResetStringSentState()
– processInitStringSendState()
– processInitStringSentState()
– processDialStringSendState()
– processDialStringSentState()

Decorator Pattern George Blankenship 12

AnswerConnection
• public void completed()

– Process ending states (normal/error)
– Close connection

• public boolean execute()
– Execute state machine (state & input)
– processInitialState() 
– processWaitDSRState()
– processWaitCTSState()
– processWaitXONState()
– processResetStringSendState()
– processResetStringSentState()
– processInitStringSendState()
– processInitStringSentState()
– processWaitCDState()
– processWaitInputState()
– processEndStringSendState()
– processEndStringSentState()



Object-Oriented Desgin Decorator Pattern

George Blankenship 5

Decorator Pattern George Blankenship 13

The Decorator Pattern: Structure

Decorator Pattern George Blankenship 14

The Decorator Pattern: Participants

• Component - Each component can be used on its own 
or wrapped by a decorator component.

• ConcrecteComponent - the object we are going to 
dynamically add new behavior to. It extends the 
Component.

• Decorator - Each decorator HAS_A (wraps) a 
component, which means the decorator has an instance 
variable that holds a reference to a component.

• ConcreteDecorator - The ConcreteDecorator has an 
instance variable for the thing it decorates (the 
Component the Decorator wraps)

Decorator Pattern George Blankenship 15

The Decorator Pattern: Collaboration

• Enclose the subject in another object, the 
decorator object, which conforms to the same 
interface. This makes the decorator transparent 
to clients. 

• The decorator forwards requests to the subject 
while performing additional actions before and 
after forwarding. 



Object-Oriented Desgin Decorator Pattern

George Blankenship 6

Decorator Pattern George Blankenship 16

The Decorator Pattern: Consequences

• A subject and its decorators are decoupled. The author of the subject does not need to 
do anything special for it to be decorated. Similarly, decorators do not need to prepare 
for being decorated. 

• It is easy to add any combination of capabilities. The same capability can even be 
added twice. This is difficult with inheritance. 

• The same object may be simultaneously decorated in different ways. Clients can 
choose what capabilities they want by sending messages to the appropriate decorator. 

• Objects do not pay for capabilities they do not use. Thus we have efficiency and 
generality at the same time. 

• While a decorator has the same interface as its subject, it is not the same object. 
Hence object identity is not compatible with decorators. This also makes it hard to 
add a new decorator at run-time, since all client pointers must be changed. See the 
Implementation section for a remedy. 

• Delegation may be required for self calls to work properly. See the Implementation 
section. 

Decorator Pattern George Blankenship 17

The Decorator Pattern: Implementation

• If the subject class is heavyweight, with lots of data or methods, it may make 
decorators too costly. Instead of changing the skin of the object, you can change the 
guts, via the Strategy pattern. Strategies do not have to conform to the subject's 
interface. The Strategy pattern can always replace the Decorator pattern, but it 
requires more anticipation. The Decorator pattern requires virtually no anticipation. 

• A new decorator can be added without changing client pointers by using a hot swap: 
copy the subject to a new location and replace it with the decorator. This only works 
if the decorator is exactly the same size as the subject. Hot swap is also useful for 
changing an object to a Proxy, e.g. for object migration. Smalltalk has built-in support 
for hot swap between any two objects. 

• Sometimes objects need to call themselves or pass themselves to other objects. What 
should the subject do in this case? Should it pass itself or the decorators? If it should 
pass the decorators, then it needs to have some way of knowing about them. (Note 
that the Strategy pattern doesn't have this difficulty.) One way is delegation, where 
the decorator passes a reference to itself when it forwards the request. That way the 
subject knows who was the original recipient. 


