
Object-Oriented Desgin Command Pattern

George Blankenship 1

Command Pattern George Blankenship 1

CSCI 253

Object Oriented Design:
Command Pattern

George Blankenship

Command Pattern George Blankenship 2

Overview
Creational Patterns

Singleton
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Command Pattern George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability

Object-Oriented Desgin Command Pattern

George Blankenship 2

Command Pattern George Blankenship 4

The Command Pattern: The Problem
Objects are used to represent actions. A command
object encapsulates an action and its parameters.

Building GUI would like
command “add menu/item”

Using GUI would like
“display this message with
time”

Easy method to create
solicitation panels

Easy method to create
boxes that validate the input

Also known as : Transaction

Command Pattern George Blankenship 5

addMenu
public void addMenu(String name, Menu menu) {

Menu helpMenu = mainMenu.getHelpMenu();
if(helpMenu!=null) mainMenu.remove(helpMenu);
menus.setTail(new MenuList(name,menu)); // add to menu list
mainMenu.add(menu); // add to the menu bar
if(helpMenu!=null) mainMenu.add(helpMenu);
repaint();

}

Command Pattern George Blankenship 6

addMenuItem

public boolean addMenuItem(String name, MenuItem item) {
MenuList l = (MenuList)menus.getFirst(); // find the menu
while((l!=null) && (l.getName()!=name))

l = (MenuList)l.getNext();
if(l==null) return false; // could not find menu
l.getMenu().add(item); // add to the menu
return true;

}

Object-Oriented Desgin Command Pattern

George Blankenship 3

Command Pattern George Blankenship 7

append

public synchronized void append(String t) {
String s = "\n"+timeStamp();
displayArea.append(s+" "+t);

}

Command Pattern George Blankenship 8

SolicitGUI
public SolicitGUI(String t, MainGUI g, ParameterPanel p) { // initialize the main window

super(t); // define the main window
screenSize = Toolkit.getDefaultToolkit().getScreenSize();
title = t;
configurationPanel = p;
mainGUI = g;
box = this;
trace = new Trace(mainGUI,CODE_FILE); // trace for debug
trace.setActive(false); // turn it off initially
setupPanels(); // set up the display panels
doneButton.requestFocus();
addWindowListener(new SolicitGUI.MainWindowEvents()); // wait for something to happen

setVisible(true); // make window visible
windowSize = getSize(); // center the window
setLocation((screenSize.width-windowSize.width)/2,

(screenSize.height-windowSize.height)/2);
trace.write("solicit GUI ready");

}

Command Pattern George Blankenship 9

InputArea
public InputField(MainGUI g, String n, int c, String t, int f) { // create

the input area
super(c); // create the field
mainGUI = g;
setName(n); // listeners can identify events
setText(t); // initial test in the field
fieldType = f;
addActionListener(new InputField.InputActions()); // wait for input
addKeyListener(new InputField.KeyEvents());

}

Object-Oriented Desgin Command Pattern

George Blankenship 4

Command Pattern George Blankenship 10

Undo

• Another of the main reasons for using
Command design patterns is that they provide a
convenient way to store and execute an Undo
function.

• Each command object can remember what it
just did and restore that state when requested to
do so if the computational and memory
requirements are not too overwhelming.

Command Pattern George Blankenship 11

The Command Pattern: Structure

Command Pattern George Blankenship 12

The Command Pattern: Participants
• Command

– declares an interface for executing an operation.
• ConcreteCommand (PasteCommand, OpenCommand)

– defines a binding between a Receiver object and an action.
– implements Execute by invoking the corresponding operation(s) on Receiver.

• Client (Application)
– creates a ConcreteCommand object and sets its receiver.

• Invoker (MenuItem)
– asks the command to carry out the request.

• Receiver (Document, Application)
– knows how to perform the operations associated with carrying out a request. Any

class may serve as a Receiver.

Object-Oriented Desgin Command Pattern

George Blankenship 5

Command Pattern George Blankenship 13

Participant Map

Command Pattern George Blankenship 14

The Command Pattern: Collaboration

• The client creates a ConcreteCommand object and
specifies its receiver.

• An Invoker object stores the ConcreteCommand object.
• The invoker issues a request by calling Execute on the

command. When commands are undoable,
ConcreteCommand stores state for undoing the
command prior to invoking Execute.

• The ConcreteCommand object invokes operations on its
receiver to carry out the request.

Command Pattern George Blankenship 15

The Command Pattern: Consequences

• The main disadvantage of the Command pattern is a
proliferation of little classes that either clutters up the
main class if they are inner or clutters up the program
namespace if they are outer classes.

• Now even in the case where we put all of our
actionPerformed events in a single basket, we usually
call little private methods to carry out the actual
function. It turns out that these private methods are just
about as long as our little inner classes, so there is
frequently little difference in complexity between inner
and outer class approaches.

Object-Oriented Desgin Command Pattern

George Blankenship 6

Command Pattern George Blankenship 16

The Command Pattern: Implementation
• It can improve API design. In some cases, code that uses a command object is shorter, clearer,

and more declarative than code that uses a procedure with many parameters. This is particularly
true if a caller typically uses only a handful of the parameters and is willing to accept sensible
defaults for the rest.

• A command object is convenient temporary storage for procedure parameters. It can be used
while assembling the parameters for a function call and allows the command to be set aside for
later use.

• A class is a convenient place to collect code and data related to a command. A command object
can hold information about the command, such as its name or which user launched it; and
answer questions about it, such as how long it will likely take.

• Treating commands as objects enables data structures containing multiple commands. A
complex process could be treated as a tree or graph of command objects. A thread pool could
maintain a priority queue of command objects consumed by worker threads.

• Treating commands as objects supports undo-able operations, provided that the command
objects are stored (for example in a stack)

• The command is a useful abstraction for building generic components, such as a thread pool,
that can handle command objects of any type. If a new type of command object is created later,
it can work with these generic components automatically.

