
Object-Oriented Desgin Chain of Responsibility Pattern

George Blankenship 1

Chain of Responsibility
Pattern

George Blankenship 1

CSCI 253

Object Oriented Design:
Chain of Responsibility Pattern

George Blankenship

Chain of Responsibility
Pattern

George Blankenship 2

Overview
Creational Patterns

Singleton
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Chain of Responsibility
Pattern

George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability

Object-Oriented Desgin Chain of Responsibility Pattern

George Blankenship 2

Chain of Responsibility
Pattern

George Blankenship 4

Chain of Responsibility Pattern: The
Problem

the chain-of-responsibility pattern is a design pattern
consisting of a source of command objects and a series of
processing objects. Each processing object contains a set of
logic that describes the types of command objects that it can
handle, and how to pass off those that it cannot to the next
processing object in the chain.

-
-

Chain of Responsibility
Pattern

George Blankenship 5

Chain of Responsibility: Applicability

• More than one handler that can handle a request
and there is no way to know which handler to
use. The handler must be determined
automatically by the chain.

• A request to one of several objects without
specifying which one explicitly.

• Modify the set of objects dynamically that can
handle requests.

Chain of Responsibility
Pattern

George Blankenship 6

Message Receipt
public void onMessage(int transportId, String message) {

HL7Connection connection = HL7Connection.findConnectionByTransport(transportId);
if(connection!=null) {

traceMessage(message," client received from "+
connection.getAddressA()+" ("+
String.valueOf(port)+")"+" on "+portType);

connection.resetMessageSpaceIn();
connection.resetMessageSpaceError();
connection.resetMessageSpaceOut();
connection.updateDataOut();
try {

messageEngine.parseMessage(message,null,connection);
} catch (ChameleonException e) {

Trace.exception(CODE_FILE,e,"(onMessage) exception while parsing message");
messageEngine.messageError(207,"Message processing internal error");
engine.sendAcceptACK(connection);
return;

}
if(connection.hasActiveFSM()) {

connection.getFSM().execute(Constants.FSM_MESSAGE_RECEIVED);
} else if(HomeTelehealth.isWaitingMessage()) {

connection.setFSM(HomeTelehealth.getWaitingMessageFSM());
connection.getFSM().execute(connection.getAddressA(),connection.getIdNumber()); // tell FSM that there is a new

connection
HomeTelehealth.clearWaitingConnectionFSM(); // no FSM waiting for a connection

} else {
engine.sendApplicationACK(connection);

}
} else {

traceMessage(message," client received (no connection) transport ("+String.valueOf(transportId)+")");
}

}

Object-Oriented Desgin Chain of Responsibility Pattern

George Blankenship 3

Chain of Responsibility
Pattern

George Blankenship 7

Message Receipt (Chain)
public void onMessage(int transportId, String message) {

if(connection!=null) {
try {

messageEngine.parseMessage(message,null,connection);
} catch (ChameleonException e) {

engine.sendAcceptACK(connection);
return;

}
if(connection.hasActiveFSM()) {

connection.getFSM().execute(Constants.FSM_MESSAGE_RECEIVED);
} else if(HomeTelehealth.isWaitingMessage()) {
} else {

engine.sendApplicationACK(connection);
}

}
}

Chain of Responsibility
Pattern

George Blankenship 8

Message Processing
public void onCensusMessage(CensusMessage abstractMessage, Transport transport) throws ChameleonException {

PatientData patientDataIn = connection.getPatientDataIn();
try {

int field;
trace.write("receive MDMT02 (Census) message");
mainGUI.append("receive MDMT02 (Census) message");
MSHTable mshTable = abstractMessage.MSH();
if(mshTable.countOfRow()!=1) {

throw(new ChameleonException("incorrect count of MSH segments ("+mshTable.countOfRow()+")"));
}
engine.getMSHdata(mshTable,connection);
field = connection.isMSHvalid();
if(field!=0 && parameters.isVendor()==false) {

messageErrorWithException("MSH",field,0,400,"invalid field");
}

} catch (ChameleonException e) { // this will generate an accept reject message
trace.exception(e," error in MDMT02 (Census) message");
messageError(201,e.toString());
throw e;

}
try {

engine.sendAcceptACK(connection);
EventTable evnTable = abstractMessage.Event();
if(evnTable.countOfRow()!=1) {

throw(new ChameleonException("incorrect count of EVN segments ("+evnTable.countOfRow()+")"));
}
engine.getEVNdata(evnTable,connection);
DocumentLineTable documentLineTable = abstractMessage.DocumentLine();
if(documentLineTable.countOfRow()!=1) {

throw(new ChameleonException("incorrect count of OBX segments ("+documentLineTable.countOfRow()+")"));
}
engine.getCensusReportData(documentLineTable,connection);
connection.setMessageType(Constants.FSM_CENSUS_MESSAGE);

} catch (ChameleonException e) { // this will generate an application reject message
trace.exception(e," error in MDMT02 (Census) message");
applicationError(201,e.toString());

}
}

Chain of Responsibility
Pattern

George Blankenship 9

Dynamic Chain
• A simple system for display the results of

typed in requests. These requests can be
– Image filenames
– General filenames
– Colors
– Other commands

• In three cases, we can display a concrete
result of the request, and in the last case, we
can only display the request text itself. In
the above example system, we type in
“Mandrill” and see a display of the image
Mandrill.jpg. Then, we type in “FileList”
and that filename is highlighted in the
center list box. Next, we type in “blue” and
that color is displayed in the lower center
panel. Finally, if we type in anything that is
neither a filename nor a color, that text is
displayed in the final, right-hand list box.

Object-Oriented Desgin Chain of Responsibility Pattern

George Blankenship 4

Chain of Responsibility
Pattern

George Blankenship 10

Chain Creation

public interface Chain {
public abstract void addChain(Chain c);
public abstract void sendToChain(String mesg);
public Chain getChain();

}

Chain of Responsibility
Pattern

George Blankenship 11

Message Processing (Chain)
public void onCensusMessage(CensusMessage abstractMessage, Transport transport) throws
ChameleonException {

try {
engine.getMSHdata(mshTable,connection);
}

} catch (ChameleonException e) { // this will generate an accept reject message
}
try {

engine.sendAcceptACK(connection);
}
engine.getEVNdata(evnTable,connection);
}
engine.getCensusReportData(documentLineTable,connection);

} catch (ChameleonException e) { // this will generate an application reject message
}

}

Chain of Responsibility
Pattern

George Blankenship 12

Message Generation
public String generateMessage(Engine AEngine) throws ChameleonException {

MSHsegment mshDataOut = connection.getMSHsegmentOut();
CensusMessage abstractMessage = new CensusMessage(AEngine);
abstractMessage.MSH().addRow();
MSHTable mshTable = abstractMessage.MSH();
mshDataOut.setReceiveApplication(parameters.getCensusApplication());
mshDataOut.setReceiveFacility(parameters.getVistAstation(),

parameters.getVistAdomainName());
mshDataOut.setSendApplication(connection.getLocalApplication());
mshDataOut.setSendFacility(connection.getLocalStation(),

connection.getLocalDomainName());
mshDataOut.setType("MDM");
mshDataOut.setAcceptACK("AL"); // want an ACK for this message
mshDataOut.setApplicationACK("AL");
engine.buildMSH(mshTable,connection);
EVNsegment evnDataOut = connection.getEVNsegmentOut();
evnDataOut.setType("T02");
abstractMessage.Event().addRow();
EventTable eventTable = abstractMessage.Event();
engine.buildEVN(eventTable,connection);
abstractMessage.DocumentLine().addRow();
DocumentLineTable documentLineTable = abstractMessage.DocumentLine();
engine.buildCensusReport(documentLineTable,connection);
return abstractMessage.generateMessage();

}

Object-Oriented Desgin Chain of Responsibility Pattern

George Blankenship 5

Chain of Responsibility
Pattern

George Blankenship 13

The Chain of Responsibility Pattern:
Structure

Chain of Responsibility
Pattern

George Blankenship 14

The Chain of Responsibility Pattern:
Participants

• CommandSender - Instances of a class send commands to the first object in
the chain. It sends a command by calling the CommandHandlerIF object's
postCommand method.

• CommandHandlerIF - All objects in the chain of objects implement the
interface.
– handleCommand method to consume the commands. The handleCommand

method returns true if it consumed the command or false if it did not.
– postCommand method the handleCommand method. If the handleCommand

method returns false and invokes the postCommand method fo next object in the
chain. If the handleCommand method returns true, the processing is complete.

• AbstractCommandHandler - Classes in this role are abstract classes that
implement the postCommand method to provide a common implementation
of postCommand.

• ConcreteCommandHandler1, ConcreteCommandHandler2 - Instances of
classes are objects in a chain of objects that can handle commands.

Chain of Responsibility
Pattern

George Blankenship 15

The Chain of Responsibility Pattern:
Collaboration

• The processing moves down the chain, item by item
• A chain using a linked list can perform this function

automatically
• A logically equivalent method moves through the

chain by directly invoking the objects

Object-Oriented Desgin Chain of Responsibility Pattern

George Blankenship 6

Chain of Responsibility
Pattern

George Blankenship 16

The Chain of Responsibility Pattern:
Consequences

• Low coupling because the sender and all handlers are
oblivious to each other.

• Since each handler decides at that moment whether it
can handle the request, the handler choice is very
flexible.

• The chain can be reordered, added to, or removed from
at run-time, creating added flexibility in how requests
are handled.

• There is no guarantee that a request will be handled.

Chain of Responsibility
Pattern

George Blankenship 17

The Chain of Responsibility Pattern:
Implementation

• If the distribution of handled requests is non-uniform between the handlers, the chain
can self-optimize by moving a handler to the front every time it fields a request.

• The chain can also be accelerated by caching the choice of handler for each type of
request. Alternatively, the cache can be interpreted as merely a "hint" and not trusted
completely.

• Instead of having a reject option, handlers could be given a pointer to their successor,
which they could forward to directly instead of rejecting. Unfortunately, this prevents
transparent reorganization tricks like the above.

• To prevent unhandled requests, the last member of the chain can be designed to
search for more handlers or perform the error condition directly.

• Chain of Responsibility can be used with a Composite hierarchy, where a
component's parent can act as its successor. It can also be an observer in the Observer
pattern.

• The members of a Chain of Responsibility can be individual functions instead of
objects. In either case, the members of the chain must have the same type.

