Builder Pattern Object-Oriented Design
CSClI 253
Object Oriented Design:
Builder Pattern
George Blankenship

Overview

Creational Patterns
(3 Singleton

El Abstract factory
gl Factory Method
gl Prototype

=) Builder

Builder Pattern

Structural Patterns
Composite
Fagade

£ Proxy

& Flyweight

& Adapter

[Bridge

& Decorator

George Blankenship

Behavioral Patterns
& Chain of Respons.

& Command

& Interpreter
Iterator

& Mediator

& Memento

) Observer

State

Strategy

& Template Method
& Visitor 2

The Elements of a Design Pattern

« A pattern name
¢ The problem that the pattern solves
— Including conditions for the pattern to be applicable
« The solution to the problem brought by the pattern

— The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

— Not a particular concrete design or implementation
« The consequences of applying the pattern

— Time and space trade off

— Language and implementation issues

— Effects on flexibility, extensibility, portability

Builder Pattern George Blankenship 3

George Blankenship 1

Builder Pattern Object-Oriented Design

The Builder Pattern: The Problem

Separate the construction of a complex object from its
representation so that the same construction process can
create different representations

- a RTF reader that can
Tl you convert into many
different formats
- a parser that
produces a complex

<P>Title</P> parse tree

<IFONT><I><P>Hello you!</P></|></BODY>

<HTML>

Save-as command
of Word

i

Builder Pattern George Blankenship 4

RTF Reader

[reaeocer | et
bulder
PaneRTe)
b ConvertCharactarfchar)
R }
|

white {1 = gel h
switch £ Typ

TextWidgetConverter

ASClIConvarter

ConvenCharacterchar)
GelASCIIText])

GatTaxtWidgst()

¢
GatTaxTax(

ﬁ ASCHiText ‘ -| TeXText |

Builder Pattern George Blankenship 5

-| TextWidget

The Builder Pattern Participants

« Builder: specifies an abstract interface for creating parts of a
Product
« ConcreteBuilder:
— constructs and assembles parts of the Product by implementing the
Builder interface
— defines and keeps track of the representation it creates
— provides an interface for retrieving the product
« Director: constructs an object using the Builder interface
* Product:
— Represents the complex object under construction

— Includes classes that define the constituent parts including the interfaces
for assembling the parts into the final result

Builder Pattern George Blankenship 6

George Blankenship 2

Builder Pattern

Builder Participants

Director builder Builder

Constuet|) o BuildPart{)
T

1
1
1
i
tor all objects in structure {

budder—>BuildPart
uilcer—>BuildPart() ConcreteBulilder [-------

BuildPart(}
GetResult()

Builder Pattern George Blankenship 7

Object-Oriented Design

The Builder Pattern Collaboration

« The client creates the Director object and configures it
with the desired Builder object

« Director notifies the builder whenever a part of the
product should be built

« Builder handles requests from the director and adds
parts to the product

« The client retrieves the product from the builder

Builder Pattern George Blankenship 8
Collaboration
aClient aDirector aConcreteBuilder

' '
new ConcrateBuilder

Construct() BuildParta()

BuildPanBi()

BuiliPanc()

GetResult{y

Builder Pattern George Blankenship 9

George Blankenship

Builder Pattern Object-Oriented Design

Multichoice GUI

+ We would like to have a display that is
easy to use for either a large number of
funds (such as stocks) or a small
number of funds (such as mutual
funds).

* We want some sort of a multiple-
choice display so that we can select
one or more funds to plot.

« If there is a large number of funds,
we’ll use a multi-choice list box and if
there are 3 or fewer funds, we’ll use a
set of check boxes.

* We want our Builder class to generate
an interface that depends on the
number of items to be displayed, and
yet have the same methods for
returning the results. i

Builder Pattern George Blankenship 10

multiChoice Class

abstract class multiChoice {

/[This is the abstract base class that are the parent for the listbox and checkbox
choice panels

Vector choices; //array of labels

/

public multiChoice(Vector choiceList) {
choices = choiceList; //save list

I1to be implemented in derived classes
abstract public Panel getUI(); /Ireturn a Panel of components
abstract public String[] getSelected(); //get list of items
abstract public void clearAll(); Ilclear selections

Builder Pattern George Blankenship 1

Choice Panel Classes

class listboxChoice extends multiChoice
— Create a list box for a large number of choices
class checkBoxChoice extends multiChoice

— Create a set of check boxes for small number of
choices

Builder Pattern George Blankenship 12

George Blankenship 4

Builder Pattern Object-Oriented Design

Panel Generation

class choiceFactory {
multiChoice ui;

/[This crl]azs returns a Panel containing a set of choices displayed by one of several Ul
methods.

public multiChoice getChoiceUl(Vector choices) {
if(choices.size() <=3) //return a panel of checkboxes
ui = new checkBoxChoice(choices);
else I/return a multi-select list box panel
ui = new listboxChoice(choices);
return ui;

Builder Pattern George Blankenship 13

The Builder Pattern Consequences

¢ + Lets you vary the product’s internal representation:
the directors uses the abstract interface provided by the builder
for constructing the product; to change the products
representation, just make a new type of builder

« + Allows reuse of the ConcreteBuilders: all code for
construction and representation is encapsulated; different
directors can use the same ConcreteBuilders

-+ Gives finer control over the construction process: in
other creational patterns, construction is often in one shot; here
the product is constructed step by step under the director’s
guidance giving fine control over the internal structure of the
resulting product

Builder Pattern George Blankenship 1

The Builder Pattern Implementation

« Assembly and construction interfaces:
— The Builder interface must be general enough to allow the construction
of products for all kinds of ConcreteBuilders
— The model for construction and assembly is a key design issue
* Why no abstract class for products?:
~ In the common casg, the products can differ so greatly in their
representation that little is to gain from giving different products a
common parent class

— Because the client configures the Director with the appropriate
ConcreteBuilder, the client knows the resulting products
« Empty methods as default in Builder:

— In C++ the build methods are intentionally not pure virtual member
functions but empty methods instead; this allows clients to overwrite only
the operations they are interested in

Builder Pattern George Blankenship 15

George Blankenship 5

