
Builder Pattern Object-Oriented Design

George Blankenship 1

Builder Pattern George Blankenship 1

CSCI 253

Object Oriented Design:
Builder Pattern

George Blankenship

Builder Pattern George Blankenship 2

Overview
Creational Patterns

Singleton
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Builder Pattern George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability

Builder Pattern Object-Oriented Design

George Blankenship 2

Builder Pattern George Blankenship 4

Title
Hello you!

The Builder Pattern: The Problem
Separate the construction of a complex object from its
representation so that the same construction process can
create different representations

- a RTF reader that can
convert into many
different formats
- a parser that
produces a complex
parse tree

Title
Hello you!

<P>Title</P>

<I><P>Hello you!</P></I></BODY>
</HTML>

Save-as command
of Word

Builder Pattern George Blankenship 5

RTF Reader

Builder Pattern George Blankenship 6

The Builder Pattern Participants
• Builder: specifies an abstract interface for creating parts of a

Product
• ConcreteBuilder:

– constructs and assembles parts of the Product by implementing the
Builder interface

– defines and keeps track of the representation it creates
– provides an interface for retrieving the product

• Director: constructs an object using the Builder interface
• Product:

– Represents the complex object under construction
– Includes classes that define the constituent parts including the interfaces

for assembling the parts into the final result

Builder Pattern Object-Oriented Design

George Blankenship 3

Builder Pattern George Blankenship 7

Builder Participants

Builder Pattern George Blankenship 8

The Builder Pattern Collaboration

• The client creates the Director object and configures it
with the desired Builder object

• Director notifies the builder whenever a part of the
product should be built

• Builder handles requests from the director and adds
parts to the product

• The client retrieves the product from the builder

Builder Pattern George Blankenship 9

Collaboration

Builder Pattern Object-Oriented Design

George Blankenship 4

Builder Pattern George Blankenship 10

Multichoice GUI
• We would like to have a display that is

easy to use for either a large number of
funds (such as stocks) or a small
number of funds (such as mutual
funds).

• We want some sort of a multiple-
choice display so that we can select
one or more funds to plot.

• If there is a large number of funds,
we’ll use a multi-choice list box and if
there are 3 or fewer funds, we’ll use a
set of check boxes.

• We want our Builder class to generate
an interface that depends on the
number of items to be displayed, and
yet have the same methods for
returning the results.

Builder Pattern George Blankenship 11

multiChoice Class
abstract class multiChoice {
//This is the abstract base class that are the parent for the listbox and checkbox

choice panels
Vector choices; //array of labels

//--
public multiChoice(Vector choiceList) {

choices = choiceList; //save list
}

//to be implemented in derived classes
abstract public Panel getUI(); //return a Panel of components
abstract public String[] getSelected(); //get list of items
abstract public void clearAll(); //clear selections

}

Builder Pattern George Blankenship 12

Choice Panel Classes

class listboxChoice extends multiChoice
– Create a list box for a large number of choices

class checkBoxChoice extends multiChoice
– Create a set of check boxes for small number of

choices

Builder Pattern Object-Oriented Design

George Blankenship 5

Builder Pattern George Blankenship 13

Panel Generation
class choiceFactory {

multiChoice ui;
//This class returns a Panel containing a set of choices displayed by one of several UI

methods.
public multiChoice getChoiceUI(Vector choices) {

if(choices.size() <=3) //return a panel of checkboxes
ui = new checkBoxChoice(choices);

else //return a multi-select list box panel
ui = new listboxChoice(choices);

return ui;
}

}

Builder Pattern George Blankenship 14

The Builder Pattern Consequences
• + Lets you vary the product’s internal representation:

the directors uses the abstract interface provided by the builder
for constructing the product; to change the products
representation, just make a new type of builder

• + Allows reuse of the ConcreteBuilders: all code for
construction and representation is encapsulated; different
directors can use the same ConcreteBuilders

• + Gives finer control over the construction process: in
other creational patterns, construction is often in one shot; here
the product is constructed step by step under the director’s
guidance giving fine control over the internal structure of the
resulting product

Builder Pattern George Blankenship 15

The Builder Pattern Implementation
• Assembly and construction interfaces:

– The Builder interface must be general enough to allow the construction
of products for all kinds of ConcreteBuilders

– The model for construction and assembly is a key design issue
• Why no abstract class for products?:

– In the common case, the products can differ so greatly in their
representation that little is to gain from giving different products a
common parent class

– Because the client configures the Director with the appropriate
ConcreteBuilder, the client knows the resulting products

• Empty methods as default in Builder:
– In C++ the build methods are intentionally not pure virtual member

functions but empty methods instead; this allows clients to overwrite only
the operations they are interested in

