
Object-Oriented Desgin Bridge Pattern

George Blankenship 1

Bridge Pattern George Blankenship 1

CSCI 253

Object Oriented Design:
Bridge Pattern

George Blankenship

Bridge Pattern George Blankenship 2

Overview
Creational Patterns

Singleton
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Bridge Pattern George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability

Object-Oriented Desgin Bridge Pattern

George Blankenship 2

Bridge Pattern George Blankenship 4

The Bridge Pattern: The Problem
Decouple interface from implementation so that the two can
be changed independently

–Logging feature may be
put into a separate class.
–The resulting class is an
abstraction of the message
logging functionality.
–A message can be logged
to different types of
destinations such as a file,
console and others.Also known as : Handle/Body

Bridge Pattern George Blankenship 5

Design Problems
• After this design is implemented, let us suppose that an application object

needs to log messages in a different format (e.g., in an encrypted form).
• The existing messaging logging functionality design is not sufficient

without either:
– Modifying different implementers
– Extending the entire class hierarchy

• Having to modify the existing code in order to extend the functionality is
not advisable and violates the basic object-oriented open-closed
principle.

• Subclassing the class hierarchy for every different type of message
format is also not recommended as it could result in an exponential
number of subclasses and soon there will be an exploding class
hierarchy.

Bridge Pattern George Blankenship 6

Bridge Pattern Advantages

• The Bridge pattern can be used in this case to
provide the ability to add new message formats
and new types of implementations to the logger
abstraction.

• The Bridge pattern separates the interface and
implementations into two separate class
hierarchies so that they both can be modified
without affecting each other.

Object-Oriented Desgin Bridge Pattern

George Blankenship 3

Bridge Pattern George Blankenship 7

MessageLogger
• public interface MessageLogger {

public void logMsg(String msg);
}

• public class FileLogger implements MessageLogger {
public void logMsg(String msg) {

FileUtil futil=new FileUtil();
futil.writeToFile(“log.txt”,msg,tru,true);

}
}

• public class ConsoleLogger implements MessageLogger {
public void logMsg(String msg) {
System.out.println(msg);
}

}

Bridge Pattern George Blankenship 8

Message
• public interface Message {

public void log(String msg);
}

• public class TextMessage implements Message {
private MessageLogger logger;
public TextMessage(MessageLogger l) {

logger = l;
}
public void Log(String msg) {

String str = preProcess(msg);
logger.logMsg(str);

}
private String preProcess(String msg) {return msg;}

}

Bridge Pattern George Blankenship 9

Logger Example

• Encrypt the log entries
• public class Client {

public static void main(String[] args) {
//Create an appropriate implementer object

MessageLogger logger = new FileLogger();
//Choose required interface object and
//configur it with the implementer object

Nessage nsg = new EncryptedMessage(logger);
msg.log(“test Message”);
}

}

Object-Oriented Desgin Bridge Pattern

George Blankenship 4

Bridge Pattern George Blankenship 10

Logger Structure

Bridge Pattern George Blankenship 11

Processing Flow

Bridge Pattern George Blankenship 12

The Bridge Pattern: Structure

Object-Oriented Desgin Bridge Pattern

George Blankenship 5

Bridge Pattern George Blankenship 13

The Bridge Pattern: Participants

• Abstraction
– Class or Class hierarchy
– Defines the interface

• Implementation
– Class or Class hierarchy
– Defines actual interface
– Defines underlying behavior

• Concrete implementation
– Instantiation of implementation classes

Bridge Pattern George Blankenship 14

The Bridge Pattern: Collaboration

• Client references abstraction interface
• Abstraction interface invokes proper instantiated object

Bridge Pattern George Blankenship 15

The Bridge Pattern: Consequences

• Decoupling of interface and implementation
– Implementation is configured at run-time
– Places library behind an interface

• Hierarchy of interface and implementation are
independent

• Implementation is hidden from clients

Object-Oriented Desgin Bridge Pattern

George Blankenship 6

Bridge Pattern George Blankenship 16

The Bridge Pattern: Implementation

• The use of multiple classes with same interface
without the use of an Interface is useful –
classes can be replaced at execution time
without recompiling

• Abstract Factory useful when multiple classes
implement an Interface

• Useful approach to add the concept of multiple
inheritance to Java

