
Object-Oriented Desgin Adapter Pattern

George Blankenship 1

Adapter Pattern George Blankenship 1

CSCI 253

Object Oriented Design:
Adapter Pattern

George Blankenship

Adapter Pattern George Blankenship 2

Overview
Creational Patterns

Singleton
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Adapter Pattern George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability

Object-Oriented Desgin Adapter Pattern

George Blankenship 2

Adapter Pattern George Blankenship 4

The Adapter Pattern: The Problem
Provide an Interface for to remap the interface of an
existing class to expected interface of another existing class

- Linked List – each
object is a list entry
(extends ListEntry)
- List of objects – none
of the object are
required to extend
LinkEntry

Also known as : Wrapper

Linked List

List of Objects

Adapter Pattern George Blankenship 5

Motivation

• Sometimes a toolkit or class library can not be
used because its interface is incompatible with
the interface required by an application

• We can not change the library interface, since
we may not have its source code

• Even if we did have the source code, we
probably should not change the library for each
domain-specific application

Adapter Pattern George Blankenship 6

Link List

• Two classes to create and maintain linked lists
– ListHead (control object for a linked list)
– ListEntry (entries that can be placed on list)
– Objects that extend ListEntry can be placed on any linked list
– Objects that do not, cannot

• Should all classes extend LinkList?
• Should objects be allowed to be on two linked lists?
• Two classes to create link lists of arbitrary entities

– ListObjectHead (extends ListHead)
– ListObject (extends ListEntry)

Object-Oriented Desgin Adapter Pattern

George Blankenship 3

Adapter Pattern George Blankenship 7

ListHead

• getCount() - returns the count of entries on the list
• getFirst() - returns first entry on the list
• getLast() - returns last entry on the list
• setHead(entry) - places entry on the head of the list
• getHead() - returns (and removes) the head of the list
• setTail(entry) - places entry on the tail of the list
• getTail() - returns (and removes) the tail of the list
• remove(entry) - removes the entry from the list
• All require that the entries extend ListEntry

Adapter Pattern George Blankenship 8

ListObjectHead
• ListObject

– Extends ListEntry
– Constructor creates a ListEntry containing an Object

• ListObjectHead extends ListHead
• Overloaded methods to use Object objects, not ListEntry objects
• setHead(Object o) {

ListEntry e = ListObject(o);
super.SetHead(e);

}
• getNextItem(Object o)

– introduced to allow user to not be aware of ListEntry encapsulation
– Returns the next object in the linked list

Adapter Pattern George Blankenship 9

Square Peg/Round Peg Example

• Two existing tool kits
– Square peg kit is able to orient and manipulate

square pegs
– Round peg kit is able to recognize and manipulate

round pegs
• Application needs to be able to deal with pegs

Object-Oriented Desgin Adapter Pattern

George Blankenship 4

Adapter Pattern George Blankenship 10

SquarePeg

• /**
* The SquarePeg class.
* This is the Target class.
*/

• public class SquarePeg {
public void insert(String str) {

System.out.println("SquarePeg insert(): " + str);
}

}

Adapter Pattern George Blankenship 11

PegAdapter
Use implies that caller “knows” peg type (square/round)

• /**
* The PegAdapter class.
* This is the Adapter class.
* It adapts a RoundPeg to a SquarePeg.
* Its interface is that of a SquarePeg.
*/

• public class PegAdapter extends SquarePeg {
private RoundPeg roundPeg;
public PegAdapter(RoundPeg peg)

{this.roundPeg = peg;}
public void insert(String str)

{roundPeg.insertIntoHole(str);}
}

Adapter Pattern George Blankenship 12

Two-way Adapter

• Provide transparency to multiple Adaptee
interfaces

• Accomplished by multiple inheritance
• Requires the use of Interfaces in Java

– Each Adaptee is represented by an Interface
– Class must be cognizant of the interfaces

Object-Oriented Desgin Adapter Pattern

George Blankenship 5

Adapter Pattern George Blankenship 13

I…Peg Interfaces
• /**

*The IRoundPeg interface.
*/

• public interface IRoundPeg {
public void insertIntoHole(String msg);

}
• /**

*The ISquarePeg interface.
*/

• public interface ISquarePeg {
public void insert(String str);

}

Adapter Pattern George Blankenship 14

…Peg Classes
• // The RoundPeg class.

public class RoundPeg implements IRoundPeg {
public void insertIntoHole(String msg) {

System.out.println("RoundPeg insertIntoHole():
" + msg);

}
}

• // The SquarePeg class.
public class SquarePeg implements ISquarePeg {

public void insert(String str) {
System.out.println("SquarePeg insert(): " + str);

}
}

Adapter Pattern George Blankenship 15

PegAdapter
• /**

* The PegAdapter class.
* This is the two-way adapter class.
*/

• public class PegAdapter implements ISquarePeg, IRoundPeg {
private RoundPeg roundPeg;
private SquarePeg squarePeg;
public PegAdapter(RoundPeg peg) {this.roundPeg = peg;}
public PegAdapter(SquarePeg peg) {this.squarePeg = peg;}
public void insert(String str) {roundPeg.insertIntoHole(str);}
public void insertIntoHole(String

msg){squarePeg.insert(msg);}
}

Object-Oriented Desgin Adapter Pattern

George Blankenship 6

Adapter Pattern George Blankenship 16

PegAdapter Example
// Test program for Pegs.
public class TestPegs {

public static void main(String args[]) {
// Create some pegs.

RoundPeg roundPeg = new RoundPeg();
SquarePeg squarePeg = new SquarePeg();

// Do an insert using the square peg.
squarePeg.insert("Inserting square peg...");

// Do an insert using the round peg.
roundPeg.insertIntoHole("Inserting round peg...");

// Create a two-way adapter and do an insert with it.
ISquarePeg roundToSquare = new

PegAdapter(roundPeg);
roundToSquare.insert("Inserting round peg...");

// Create a two-way adapter and do an insert with it.
IRoundPeg squareToRound = new

PegAdapter(squarePeg);
squareToRound.insertIntoHole("Inserting square peg...");

}
}

Adapter Pattern George Blankenship 17

The Adapter Pattern: Structure

Adapter Pattern George Blankenship 18

The Adapter Pattern: Participants

• Target: domain-specific interface
• Client: collaborates with objects using the

Target interface
• Adaptee: existing interface that needs adapting

for use by Client
• Adapter: adapts the Target interface to the

Adaptee interface

Object-Oriented Desgin Adapter Pattern

George Blankenship 7

Adapter Pattern George Blankenship 19

The Adapter Pattern: Collaboration

• Clients invoke operations of an Adapter instance
• Adapter instance invoke operation of an Adaptee

instance
• Client is not aware of the Adaptee instance

Adapter Pattern George Blankenship 20

The Adapter Pattern: Consequences

• Class adapter
– Concrete Adapter class
– Unknown Adaptee subclasses might cause problem
– Overloads Adaptee behavior
– Introduces only one object

• Object adapter
– Adapter can service many different Adaptees
– May require the creation of Adaptee subclasses and

referencing those objects

Adapter Pattern George Blankenship 21

The Adapter Pattern: Implementation

• Adapter should be subtype of Target
• Pluggable adapters should use the narrowest

definition
– Abstract operations to minimize exposed interface
– Delegated objects to localize behavior
– Parameterized processing avoids subclasses of

adaptee

