
Object-Oriented Desgin Abstract Factory Pattern

George Blankenship 1

Abstract Factory Pattern George Blankenship 1

CSCI 253

Object Oriented Design:
Abstract Factory Pattern

George Blankenship

Abstract Factory Pattern George Blankenship 2

Overview
Creational Patterns

Singleton
Abstract factory
Factory Method
Prototype
Builder

Structural Patterns
Composite
Façade
Proxy
Flyweight
Adapter
Bridge
Decorator

Behavioral Patterns
Chain of Respons.
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template Method
Visitor

Abstract Factory Pattern George Blankenship 3

The Elements of a Design Pattern
• A pattern name
• The problem that the pattern solves

– Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern

– The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations

– Not a particular concrete design or implementation
• The consequences of applying the pattern

– Time and space trade off
– Language and implementation issues
– Effects on flexibility, extensibility, portability

Object-Oriented Desgin Abstract Factory Pattern

George Blankenship 2

Abstract Factory Pattern George Blankenship 4

The Abstract Factory Pattern: The
Problem

Provide an Interface for creating families of related or
dependent objects without specifying their concrete classes

- A GUI toolkit that
supports multiple look-
and-feel standards
- Achieve portability of
an application across
different windowing
systems

Also known as : Kit

Abstract Factory Pattern George Blankenship 5

Widget Factory

Abstract Factory Pattern George Blankenship 6

The Abstract Factory Pattern
Participants

• AbstractFactory: declares an interface for operations that create
abstract product objects

• ConcreteFactory: implements the operations to create concrete
product objects

• AbstractProduct: declares an interface for a type of product
object

• ConcreteProduct: defines a product object to be created by the
corresponding concrete factory; implements the AbstractProduct
interface

• Client: uses only interfaces declared by AbstractProduct and
AbstractFactory

Object-Oriented Desgin Abstract Factory Pattern

George Blankenship 3

Abstract Factory Pattern George Blankenship 7

Participant Map

Abstract Factory Pattern George Blankenship 8

The Abstract Factory Pattern
Collaboration

• AbstractFactory defers creation of product objects to
its ConcreteFactory subclass

• A single instance of a ConcreteFactory is created at
run-time; this concrete factory creates product objects
having a particular implementation

Abstract Factory Pattern George Blankenship 9

UI Look and Feel

String laf =
UIManager.getSystemLookAndFeelClassName();
try {UIManager.setLookAndFeel(laf);}
catch (UnsupportedLookAndFeelException exc)

{System.err.println("UnsupportedL&F: " + laf);}
catch (Exception exc)

{System.err.println("Error loading " + laf);}

Object-Oriented Desgin Abstract Factory Pattern

George Blankenship 4

Abstract Factory Pattern George Blankenship 10

The Abstract Factory Pattern
Conseq. (1)

• + Isolates concrete classes: the AbstractFactory
encapsulates the responsibility and the process to create product
objects, it isolates clients from implementation classes; clients
manipulate instances through their abstract interfaces, the
product class names do not appear in the client code

• + Makes exchanging product families easy: the
ConcreteFactory class appears only once in an application -that
is, where it is instantiated- so it is easy to replace; because the
abstract factory creates an entire family of products the whole
product family changes at once

Abstract Factory Pattern George Blankenship 11

The Abstract Factory Pattern
Conseq. (2)

• + Promotes consistency between products: when
products in a family are designed to work together it is
important for an application to use objects from one family only;
the abstract factory pattern makes this easy to enforce

• +- Supporting new types of products is difficult:
extending abstract factories to produce new kinds of products is
not easy because the set of Products that can be created is fixed
in the AbstractFactory interface; supporting new kinds of
products requires extending the factory interface which involves
changing the AbstractFactory class and all its subclasses

Abstract Factory Pattern George Blankenship 12

The Abstract Factory Pattern
Implement. (1)

• Factories as singletons: an application needs only one instance
of a ConcreteFactory per product family, so it is best to
implement this as a singleton

• Creating the products:
– AbstractFactory only declares an interface for creating products, it is up

to the ConcreteFactory subclasses to actually create products
– The most common way to do this is use a factory-method for each

product; each concrete factory specifies its products by overriding each
factory-method; it is simple but requires a new concrete factory for each
product family even if they differ only slightly

– An alternative is to implement the concrete factories with the prototype
pattern; the concrete factory is initialised with a prototypical instance of
each product and creates new products by cloning

Object-Oriented Desgin Abstract Factory Pattern

George Blankenship 5

Abstract Factory Pattern George Blankenship 13

The Abstract Factory Pattern
Implement. (2)

• Defining extensible factories:
– a more flexible but less safe design is to provide AbstractFactory with a

single “make” function that takes as a parameter (a class identifier, a
string) the kind of object to create

– is easier to realise in a dynamically typed language than in a statically
typed language because of the return type of this “make” operation

– can for example be used in C++ only if all product objects have a
common base type or if the product object can be safely coerced into the
type the client that requested the object expects; in the former the
products returned all have the same abstract interface and the client will
not be able to differentiate or make assumptions about the class of the
product

