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Introduction
• Exciting methodological toolkit

• Multilevel modeling is not monolithic
– There are lots of different types of model specifications that fall 

under the umbrella.

– Various specifications carry different substantive interpretations.



Outline
I.   Motivation and Core Issues

II.  Linear variance components model

III.  Random intercept model (aka, random effects model) and its
alternatives (e.g., OLS, fixed effects, “between” effects)

IV.   Cluster confounding

V.  Applications to longitudinal (panel/time-series cross-
sectional) data

VI.  Random coefficient model

VII. Nonlinear models for noncontinuous dependent variables

I. Motivation and Core Issues



Multilevel Data
• Contain multiple levels of analysis, with each level consisting 

of distinct units of analysis.

• Most common form of multilevel data: hierarchical data. 
– Two-level structure: Units from the lowest level of analysis 

(level-1 units) are nested withinunits from a higher level of 
analysis (level-2 units)

• Data are “clustered”

• Level-2 units are referred to as “clusters”

– Three-level structure: Third level is present

Multilevel Data
• Examples

– Education: students (level-1 units) nested within schools (level-2 
units)

• Three levels: students nested within schools nested within 
states

– Individuals nested within cities
– Voters nested within congressional districts
– Voters nested within time (or temporal contexts)
– Panel data and time-series cross-sectional (TSCS) data

• What’s a sufficient number of level-2 units, or clusters? 
– Rough guideline: >15

• What’s a sufficient number for cluster sizes (number of 
observations per cluster/level-2 unit)? 
– Cluster sizes can vary; at least 2 and more like >5 (rough 

guideline)



Multilevel Data
Student School Y X1 X2 X3 X4

1 1 54 2 32 1 44

2 1 64 4 25 1 44

3 1 87 9 45 1 44

4 2 24 4 44 0 36

5 2 98 7 32 0 36

6 2 65 6 22 0 36

7 3 45 9 19 0 22

8 3 32 5 15 0 22

9 3 37 2 25 0 22

10 4 84 7 30 1 45

11 4 45 4 38 1 45

12 4 65 3 36 1 45

13 5 21 8 41 1 18

14 5 65 6 22 1 18

15 5 98 1 18 1 18

• X1 and X2 
are level-1 
variables

• X3 and X4 
are level-2 
variables.

• Balanced 
data: cluster 
sizes are 
equal

Panel / TimePanel / Time--Series CrossSeries Cross--Sectional DataSectional Data
i j t Y X1 X2 X3 X4

1 1 1 54 2 32 1 44

2 1 2 64 4 25 1 44

3 1 3 87 9 45 1 44

4 2 1 24 4 44 0 36

5 2 2 98 7 32 0 36

6 2 3 65 6 22 0 36

7 3 1 45 9 19 0 22

8 3 2 32 5 15 0 22

9 3 3 37 2 25 0 22

10 4 1 84 7 30 1 45

11 4 2 45 4 38 1 45

12 4 3 65 3 36 1 45

13 5 1 21 8 41 1 18

14 5 2 65 6 22 1 18

15 5 3 98 1 18 1 18



Motivation
• Types of phenomena we’re interested in are multilayered and 

complex.
– Incorporating these layers enhances our substantive explanations

of phenomena.

• People don’t make choices or behave in a vacuum; there’s a 
context in which they act. 

• This contextual, or situational, variation may have 
consequences for how people behave.

• Most simple cross-sectional data ignores this structure; “naïve 
pooling”

Motivation
• Parsing explained variance in the dependent variable between 

individual versus aggregatelevels of analysis. 
– Student versus school effects on performance.



Key TopicsKey Topics
1.  Unobserved heterogeneity(in the dependent variable)

– Between-cluster heterogeneity in the dependent variable

• Unobserved factors specific to each cluster that influence the 
dependent variable; factors are shared by observations within each 
cluster.

• Unmeasured, unobserved, and unimagined differences between 
clusters.

– Method: Random intercept models (aka, random effects)

– UH in a cross-sectional context: 

yi = b0 + b1x1i + b2x2i + ei

UH in Hierarchical ContextUH in Hierarchical Context



Key TopicsKey Topics
2.  Pooling

– Degree to which parameters (e.g., intercept, effects of IVs) are
“pulled” toward the pooled (global) effect or reflect within-
cluster variation. 

Spectrum: 

No Partial Pooling Complete

Pooling ------------------------------------------- Pooling

3.  Distinguish within-cluster, between-cluster, and total 
variation
– “Cluster confounding”

Within-Cluster v. Between-Cluster Variation
Student School Y X1 X2 X3 X4

1 1 54 2 32 1 44

2 1 64 4 25 1 44

3 1 87 9 45 1 44

4 2 24 4 44 0 36

5 2 98 7 32 0 36

6 2 65 6 22 0 36

7 3 45 9 19 0 22

8 3 32 5 15 0 22

9 3 37 2 25 0 22

10 4 84 7 30 1 45

11 4 45 4 38 1 45

12 4 65 3 36 1 45

13 5 21 8 41 1 18

14 5 65 6 22 1 18

15 5 98 1 18 1 18



Cluster ConfoundingCluster Confounding

Key TopicsKey Topics
4.  Causal heterogeneity

– When the relationship between X and Y varies across cluster

– How higher level variables shape lower-level relationships.

– Methods: Random coefficient models



II. Linear Variance Components Model

Modeling Clustered DataModeling Clustered Data

• We’ll start simple: No independent variables

• Linear variance components model

• We’ll focus on making inferences about cluster means, i.e., mean of Y for 
each level-2 unit.



PoolingPooling
• Degree to which each cluster mean is “pulled” toward the 

overall, global mean. 

Spectrum: 

No Partial Pooling Complete

Pooling ------------------------------------------- Pooling

• Important questions:
– What does each approach imply? 

– Under what conditions would we want to rely on each type when 
making inferences about cluster means?

PoolingPooling



Modeling Clustered DataModeling Clustered Data
• No Pooling:

– Within-clustercentral tendency and variation are all that matter. 

– Between-clustervariation ignored. 

– Generalize (in terms of means of the DV) one cluster at a time (in 
isolation) using cluster means 

– Estimation technique: Fixed-effects (within) estimator

• Complete Pooling:
– Ignores clustering/hierarchical structure. 
– Doesn’t distinguish within- versus between-cluster variation 
– Generalization: “Global mean” or “grand mean”

• Balanced data: mean of DV over entire sample
• Unbalanced data: mean of the cluster means

– Estimation technique: Plain-vanilla pooled regression (e.g., 
OLS)

Modeling Clustered DataModeling Clustered Data
• Partial Pooling:

– Weighted averagebetween no pooling and complete pooling 
extremes.

• Borrows information from completely pooled mean to 
generate refined estimate of cluster mean (think about 
“uninformative” clusters)

– Partially-pooled estimates of cluster meansare going to be 
weighted averages of the “no pooling cluster means”and the 
“completely-pooled mean of the cluster means.”

– Estimation technique: random intercept (aka, random effects) 
model 

– Considerations affecting the degree of partial pooling?



Modeling Clustered DataModeling Clustered Data
Level-1 units indexed i=1, 2, …N.   Level-2 units indexed j=1, 2, …J. 

N level-1 units nested within J level-2 units.
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Reduced formversion: 

• Key specification decision: How we treat ζj is directly connected to the 
three approaches just discussed.

– No pooling? 

– Complete pooling?

– Partial pooling?

ζj = unobserved heterogeneity (cluster 
level)

var(ζi)=ψ : Between-cluster variance.

var(εij)=θ : Within-cluster variance.

Intraclass correlation: ρ = ψ / (ψ  + θ)

Cluster Means and Partial PoolingCluster Means and Partial Pooling



IntraclassIntraclass CorrelationCorrelation
• Intraclass correlation: ρ = ψ / (ψ  + θ)

• Can be thought of as: 
– Degree of cluster-level unobserved heterogeneity

– Degree of within-cluster dependence

• Connection to reliability

– “Cluster differentiation” or “uniqueness”

• What makes ρ large or small?
– Depends on changes in ψ and changes in θ

Testing for Unobserved HeterogeneityTesting for Unobserved Heterogeneity
• Is there significant between-cluster UH? 

• Hypothesis test:

H0: ψ = 0

HA: ψ > 0

• Statistical tests



Shrinkage and Pooling in Random Intercept Shrinkage and Pooling in Random Intercept 
ModelModel

• Shrinkage and pooling are directly related. 
– The “weight” that determines how much the within-cluster means are 

pulled toward the pooled mean

• Shrinkage is the degree to which ζj’s (level-2 residuals) are pulled 
toward zero; centers on estimating ζj’s.

• Pooling is the degree to which the cluster means gravitate 
toward the global mean of Y.
– Gives us deeper insight into how much unobserved heterogeneity there 

is in the dependent variable. 

• Recall that the variance components model (random intercept 
model w/no IVs) allows for partial poolingof the cluster 
means. 

• We can calculate the degree of partial poolingusing a “pooling 
factor.”

Generating PartiallyGenerating Partially--Pooled LevelPooled Level--2 Residuals2 Residuals

• Level-2 residuals from the partially-pooled approach reflect 
how much each cluster deviates from the global mean. 

• Partially pooled level-2 residuals are called “empirical Bayes”
(EB) residuals, which uses the “prior” distribution of ζ           
[ζ ~ N(0, ψ)], combined with the “data” (how informative the 
clusters are individually) to generate a “posterior” prediction 
of ζ (partially-pooled prediction). 

• The smaller ψ is, the more informative the prior and the more 
it will drag the predicted ζ toward 0, which is the mean of the 
prior distribution (hence, “shrinkage”). 



Shrinkage Factor and EB ResidualsShrinkage Factor and EB Residuals
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• The EB prediction of ζ is: 

ζj
ΕΒ = Rj*ζj

ML

• Note that nj represents the cluster size for cluster j. 

• There will more shrinkage when (note high shrinkage is associated 
with small R): 

– ψ is small (informative prior)

– θ is large (uninformative data)

– Cluster sizes (nj) are small (uninformative data)

Partial PoolingPartial Pooling
• Partial poolingis the extent to which partially-pooled cluster means 

gravitate toward the pooled (global) mean of Y. The pooling factor, 
ωj can be calculated as:
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• The same factors that increase shrinkage of the ζj’s will increase the 
degree of partial pooling. Thus, the partially-pooled cluster means 
will increasingly pool around the global mean when: 

– ψ is small (little differentiation in cluster means)

– θ is large (uninformative clusters)

– Cluster sizes are small (uninformative clusters)

• If ω = 0, what happens? 

• If ω = 1, what happens? 

• If 0 < ω < 1, what happens?



PoolingPooling
• Shrinkage and pooling factors can be calculated using our 

model results; note that all we need are the variance estimates 
at each level and the cluster size(s).

• Pooling factors for balanced versus unbalanced data….
– Balanced? 

– In unbalanced data, how will variation in cluster size influence
the degree of pooling? How and why?

Calculating PartiallyCalculating Partially--Pooled Cluster MeansPooled Cluster Means

• We can use our estimates of pooling factors to calculate partially-
pooled estimates of our parameters (in this case, the random 
intercepts, β0j,). 

• In a model with no independent variables, our partially-pooled 
estimates of the random intercepts will be partially-pooled cluster 
means. 

• First , use the following equation:

jjjj y)1(ˆ
0 ωµωβ −+=

• Note that µ represents the pooled mean (mean of the cluster means); 
y-barj represents the cluster mean for cluster j.

• Revisit:  If ω = 0, what happens?  If ω = 1, what happens? 



PartiallyPartially--Pooled MeansPooled Means

• Second, to generate partially-pooled cluster means (intercepts), use:
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• Note the similarity to the other equation...
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III. Random Intercept Model and Its Alternatives



Modeling Clustered DataModeling Clustered Data

• Let’s add independent variables!

• Four approaches (producing different inferences about the effect of X on 
Y):

1.  Complete pooling (OLS)

2.  No pooling (fixed effects, or within estimator) 

3.  Partially pooled (random intercept model)

• Now, we’re dealing with partially-pooled coefficients. 

• Effects of X’s on Y are a weighted average between the complete 
pooling and no pooling (within) estimates. 

4.  Between estimator (which is also no pooling, but in a different way 
than the within approach).

• Different types of interpretations….

Fixed Effects (Within) Approach

• Two equivalent ways of thinking about this:

1. Dummy variable method(LSDV): include unit-specific 
dummy variables (leave one as the excluded group). All of 
the between-unit variation is absorbed in the estimates of the 
fixed ζi’s. 

ijjijij xy εζβγ +++= 100



Fixed Effects (Within) Approach
i j Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

1 1 1 0 0 0 0

2 1 1 0 0 0 0

3 1 1 0 0 0 0

4 2 0 1 0 0 0

5 2 0 1 0 0 0

6 2 0 1 0 0 0

7 3 0 0 1 0 0

8 3 0 0 1 0 0

9 3 0 0 1 0 0

10 4 0 0 0 1 0

11 4 0 0 0 1 0

12 4 0 0 0 1 0

13 5 0 0 0 0 1

14 5 0 0 0 0 1

15 5 0 0 0 0 1

Fixed Effects (Within) Approach

• Two equivalent ways of thinking about this:

1. Dummy variable method(LSDV): include unit-specific 
dummy variables (leave one as the excluded group). All of 
the between-unit variation is absorbed in the estimates of the 
fixed ζi’s. 

Thus, the β ’s are within-cluster effects. 

• LSDV (least squares dummy variable) can be estimated via OLS 
with the inclusion of the unit-specific dummies (minus one). 

• What happens to level-2 variables?

ijjijij xy εζβγ +++= 100



Fixed Effects (Within) Approach
2.  Deviations from means

• Subtract the cluster-specific means from each value of each 
variable. Do this for both Y and the X’s.
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• Note: (1) ζj, the between-unit effect, is eliminated; and (2) how 
both approaches explicitly highlight that the β’s are within-unit
effects.

Fixed Effects (Within) Approach
• To estimate this second approach (deviation from means), 

subtract cluster means, then estimate with OLS using these 
transformed variables.

• Note that the LSDV and “deviations from means” approaches 
produce analytically equivalentestimates of β. 

xyxxW WW 1−=β



Between Estimator
• Ignores within-cluster variation, focuses solely on between-cluster 

variation

• Regress cluster means of Y on cluster means of X.
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• Note: What’s the relationship between the within- and between-
cluster versions of a variable? 

Random Intercept Model (Partial Pooling)
Level-1 units indexed i=1, 2, …N. Level-2 units indexed j=1, 2, …J. 

N level-1 units nested within J level-2 units.
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[Level-1 equation]

[Level-2 equation]

Assumptions:



Two-Level Random Intercept Model
Reduced formversion: 
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• Fixed partand random part… [note “fixed” versus “random” effects 
verbiage.]

• Var(ζi)=ψ : Between-cluster (level-2) error variance.

• Var(εij)=θ : Within-cluster (level-1) error variance.

• Intraclass correlation: ρ = ψ / (ψ  + θ)

Two-Level Random Intercept Model
• Adding level-2 predictors
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• Reduced-form equation:

ijjjijij wxy εζγβγ ++++= 01100



GLS Estimation of Linear Random Intercept Model

ijjijij xy εζβγ +++= 100

• Again, note that we’re dealing with fixed β. 
• Can be estimated via GLS and ML; both yield similar results.
• Foundation: GLS estimates of β1 are a weighted average of the 

pooled and within estimates of β1.
– Partial pooling of coefficients.

GLS Estimation of Linear Random Intercept Model

• Within, between, OLS, and GLS estimates:
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• n = cluster size; this equation assumes balanced structure (i.e., equal 
cluster sizes), though you can relax this for unbalanced structure.

• If ω = 0, βGLS reduces to βW. 

• If ω = 1, βGLS reduces to βOLS. 

• As cluster size increases, βGLSbecomes more similar to βW.



Linear Random Intercept Model

• Goodness-of-fit measures:
– Intraclass correlation coefficient, ρ
– Testing RI model vs. pooled OLS (H0: ψ=0)

– Pooling factor

– R2 at each level

• R2: How much variance in the DV are we explaining at each 
level (R-H & S, 103)?  Proportional reduction in error:
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• Subscript 0: error variance (at each level) from model with no IVs.

• Subscript 1: error variance (at each level) from model with IVs.

Additional Measure of Partial Pooling
• A way to summarize the average degree of pooling, λ, for each 

random parameter (e.g., random intercept, random slopes) is 
suggested by Gelman and Hill:
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• We can calculate this for each random parameter.

• What is the numerator and what is the denominator? 

– Numerator represents the variance of the partially-pooled
residuals (at level 2, for each parameter)

– Denominator: Level-2 error variance.



Interpretation of Effects for All Approaches

• How do we interpret effects from each approach?

• What do the pooled and RI approaches assume about the 
within- and between-cluster effects?

WithinWithin--Cluster v. BetweenCluster v. Between--Cluster VariationCluster Variation
Student School Y X1 X2 X3 X4

1 1 54 2 32 1 44

2 1 64 4 25 1 44

3 1 87 9 45 1 44

4 2 24 4 44 0 36

5 2 98 7 32 0 36

6 2 65 6 22 0 36

7 3 45 9 19 0 22

8 3 32 5 15 0 22

9 3 37 2 25 0 22

10 4 84 7 30 1 45

11 4 45 4 38 1 45

12 4 65 3 36 1 45

13 5 21 8 41 1 18

14 5 65 6 22 1 18

15 5 98 1 18 1 18



Considerations for the FE (Within) Estimator
• It’s an easy way to account for unobserved heterogeneity in the 

response. 

• Since the ζj are treated as fixed, instead of random, the potential for 
endogeneity between X and ζj (the controversial assumption) is 
eliminated. 

• Consistent as N and J � infinity.

• More appropriate for inferring to clusters in sample only?

Issues:

• Overall efficiency loss by eliminating between group variation. 

• FE cannot produce estimates for variables that are constant within 
clusters (level-2 vars; time-invariant in panel and TSCS data). 

• Difficult to generate precise estimates for the effects of variables 
that contain small within-cluster variation.
– This is a problem with the data, though, and not FE, per se.

Considerations for the Random Intercept Model
• More efficient than FE (minimum variance property)

• One can include variables that are constant within clusters (unlike 
the within estimator). 

• Appropriate when inferring to populationof clusters?

• Issue: Correlation between random effect and X at level 1. 



IV. Cluster Confounding

Controversial Assumption in the RI Model
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[Level-1 equation]

[Level-2 equation]

Controversial Assumption

• Issue: We need an accurate estimate of β1. Note that this is fixed, so that βGLS, βW, βB

are all estimates of the same parameter, β. 

• Note that βGLS (and OLS) assumes that the between and within effects are the same 
(i.e., β). 
– Remember that xij varies both within and between clusters.

• But….the between effect could differ from the within effect for a variety of reasons. 

• “Cluster confounding”; due to omitted variable(s) at level-2 (which are related to 
xij), β1 could be confounded by conflicting between and within effects.

• Cluster confounding occurs when we’ve assumed the within and between effects 
are the same (by estimating a pooled or partially-pooled β), but they’re actually 
different.
– Think about what it would take to eliminate the controversial assumption in the model 

above?  Also, connection to ecological fallacy. 



1.  1.  HausmanHausman TestTest
• Tests the equality of coefficients b/w FE and RE model.

– Essentially testing the “controversial assumption”and therefore, 
the existence of cluster confounding. 

– RI and FE are consistent (for β) if correctly specified. However, if 
we violate the “controversial assumption,” RI becomes 
inconsistent, while FE remains consistent.

– If there is no cluster confounding, FE=RE. 

• Why?  2 possibilities?

– R-H&S, p. 123

2.  Accounting for Cluster Confounding
• We can solve this by estimating bothbetween and within effects of β in 

the random intercept modeling framework (R-H & S, 113-19). 

• For level-1 variables, generate a within-cluster and between-cluster 
operationalization. 

• Recall: 
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• Generating these operationalizations:

[Between]

[Within]
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2.  Accounting for Cluster Confounding
• Estimate both the within and between-cluster effects of xij

• Method 1: 

ijjj
BW
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W

ij xxy εζβββ ++++= 0

• Method 2 (identical model, different interpretation): 

ijjjij
W

ij xxy εζδββ ++++= 0

• What is the correlation now between the within-cluster xij andζj?

• Can perform Hausman-like test for equality of between and within 
estimates. δ represents the differencebetween with the within- and 
between-cluster effects.

• Importance: Highlights consequences for the models assuming 
within- and between-cluster effects are equal. 

V.  Panel / Time-Series Cross-Sectional Data



Panel / TimePanel / Time--Series CrossSeries Cross--Sectional DataSectional Data
i j t Y X1 X2 X3 X4

1 1 1 54 2 32 1 44

2 1 2 64 4 25 1 44

3 1 3 87 9 45 1 44

4 2 1 24 4 44 0 36

5 2 2 98 7 32 0 36

6 2 3 65 6 22 0 36

7 3 1 45 9 19 0 22

8 3 2 32 5 15 0 22

9 3 3 37 2 25 0 22

10 4 1 84 7 30 1 45

11 4 2 45 4 38 1 45

12 4 3 65 3 36 1 45

13 5 1 21 8 41 1 18

14 5 2 65 6 22 1 18

15 5 3 98 1 18 1 18

Issues in TSCS Data
• Unobserved heterogeneity

• Pooling

• Temporal dependence

• Efficiency – standard errors
– Panel heteroskedasticity (panels have different error variance)

– Contemporaneous error correlation (errors related across 
countries for given years)

– Serial correlation



Beck and Katz 1995
• Recommended using OLS with panel-corrected standard errors 

(PCSEs)
– Serial correlation should be eliminated before estimation.

– Adjusts SEs for panel heterosk. and contemporaneous 
correlation.

• Like robust standard errors in OLS for cross-sectional data.
var(b)=(X’X) -1 (X’ Ω Ω Ω Ω X)(X’X) -1

– Ω is the same as in GLS.

– The larger T is, the better the PCSEs are.

– In Stata, “xtpcse”

• Article did not place emphasis on UH, just standard error 
correction; they also suggest AR-1 correction.

• What kind of an approach is this?

Beck and Katz 1996
• Now widely accepted in political science: Beck and Katz 

(1996); FE with lagged DV and PCSEs.

• Same issues apply to TSCS/panel data that we have talked 
about
– Modeling approaches along pooling spectrum

– Cluster confounding

• Primary difference is dynamics.



VI. Random Coefficient Model

Two-Level Random Coefficient Model
• Motivation for random coefficient model:  Causal 

heterogeneity.



Two-Level Random Coefficient Model

• We’ll start simple; no level-2 covariates.
• Reduced form:
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Testing the Adequacy of the Random Coefficient Model

• In ML, we can do a likelihood ratio test to test the statistical
significance of the random coefficient specification. 

– Compare our full model with random intercept and 
random coefficient specification to a reduced model 
with only a random intercept specification. 

– LR test: generate a chi-square statistic, which is 
2*(LL F-LLR), which is the same as -2*(LLR-LLF). 

– H0: ψ22 = ψ 21= 0 [no causal heterogeneity across 
clusters]

– Specify full model (RC) first, then reduced (RI). Use 
Stata’s “lrtest” command. 

– Or do it manually; generate chi-squared stat, then use 
“chiprob” to get p-value (note: 2 degrees of freedom in 
this test.).



Random Coefficient Model
ijijjjij xy εζγζγ ++++= )()( 210100

• Think about what this means: 
– The random effect for the intercept represents a cluster’s deviation from 

the “mean intercept.” [more specifically…..]
– The random effect for the slope represents a cluster’s deviation from the 

“mean slope.”

• Mean-centering: The random intercept actually represents the cluster 
average when x=0. To make substantive interpretations of the random 
intercept part, we can mean-center the x’s at level 1. 
• Then, the intercept represents the average cluster level of the DV, 

since it’s for a typical value of x. 

Random Coefficient Model
• Generating empirical Bayes residuals at level 2 for the slope 

and intercept.

• Using these to calculate partially-pooled slopes and intercepts.



Random Coefficient Model with Cross-Level Interactions
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• Causal heterogeneity, in addition to heterogeneity in the response.
• Level-2 error components are distributed multivariate normal, with means 

of zero and estimable variances and covariance.

Random Coefficient Model with Cross-Level Interactions
Reduced form
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• Mean centering: importance for understanding constituent effects when 
there are interactions

– No mean centering

– “Grand mean” centering

– Cluster mean centering (like operationalizing within and between-
cluster versions of a level-1 variable.



Estimation

• Note for linear models, differences in estimation procedures is 
not a huge deal; it’s a bigger deal for nonlinear models. 

• Estimation techniques: 
– GLS

– Maximum likelihood

– Restricted ML (REML)

• All three are asymptotically equivalent 

Maximum Likelihood Estimation
• Conditional distribution of the response (conditional on the 

random effects): 
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• Goal: Obtain the unconditional (marginal) distribution of the 
response for each cluster j by integrating out the random 
effects:

• Marginal likelihood:
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Maximum Likelihood Estimation
• For linear model: there’s a closed form solution to integral. 

– For nonlinear models, integral is approximated using quadrature

• Use EM algorithm to maximize the likelihood
– Mutual dependence of estimates for fixed effects and variance 

components

– Iterative procedure; alternate between “expectation” and 
“maximization” steps

Differences b/w ML and REML
• Differences are minor, and primarily center on calculating the 

variance components. 

• In REML, likelihood function not directly applied to the response, 
Y. Instead, the restricted likelihood is the full likelihood with the 
variance components only and the fixed effects swept out. Fixed 
effects (coefficients) estimated in second step.

• REML accounts for the loss of degrees of freedom due to estimation 
of parameters; generates unbiased estimates of the variance 
components.

• ML estimates do not account for this loss of df, and they are 
consistent. There’ll be a downward bias of ψ in small samples 
(particularly small number of clusters).

• This is analogous to OLS versus ML estimates of error variance in 
linear regression.



Summarizing the Degree of Pooling
• A way to summarize the average degree of pooling, λ, for each 

random parameter (e.g., random intercept, random slopes) is 
suggested by Gelman and Hill:
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• We can calculate this for each random parameter.

• What is the numerator and what is the denominator? 

– Numerator represents the variance of the partially-pooled
residuals (at level 2, for each parameter)

– Denominator: Level-2 error variance.

– Measures of R2

VII.  Multilevel Models for Binary Dependent 
Variables



Binary Responses: GLM Specification
• Hierarchical generalized linear models (HGLM):

1. Specify the sampling model for the dependent variable. 

2. Specify link function (first, conditional expectation of 
response; then, the link is the inverse of that)

3. Specify structural model; model link as a linear function of 
independent variables.

• For linear models, we don’t really need to think in a GLM 
format:

Yi = b0+b1Xi+ei

• But we could: Normal sampling model, identity link 
[µi=E(Yi | Xi)=x’β]

GLM Specification
• Utility of HGLM: For nonlinear models.

• Example for binary DVs
1. Bernoulli sampling model

2. Logit link: 

a. Conditional expectation of response: 

E(Yi | Xi) = µi = Pr(Yi=1 | Xi) = exp(x’β) / [1+ exp(x’β)]
b. Link is the inverse of µi

ηi=log[µi / (1 –µi)]  [log-odds]

3. Structural model: write ηi as a linear function of level-1 



Estimation
• See handout

• gllamm or xtmelogit (uses quadrature)

Estimating Multilevel Models with Binary Responses 
in Stata

• xtlogit and xtprobit : random intercept models only (default is 
adaptive quadrature, 12 points)

• xtmelogit: RI and RC logit model (default is adaptive quadrature, 7 
points)

• gllamm: add-on package to Stata (created by Rabe-Hesketh and 
Skrondal); estimates RI and RC models for all types of DVs
(continuous, binary, ordinal, count, duration, nominal); uses 
quadrature and adaptive quadrature.
– To install, type (in Stata):  ssc install gllamm

• See handout on gllamm. 

• Using good start values and increasing number of quadrature points.



Generating Quantities of Interest
• In gllamm, use the “gllapred” command (after specifying a 

gllamm model)

• To retrieve empirical Bayes residuals:
gllapred eb, u

• For an RI model, this will generate two variables: ebm1 and 
ebs1. 
– ebm1 is the empirical Bayes residuals (like what we get with 

“reffects” in the canned xtmixed and xtmelogit). 
– ebs1 is the s.e. of the EB residuals

• For an RC model, the command will generate four variables: 
ebm1, ebs1, ebm2, and ebs2. “1” is for random intercept, “2”
is for random slope.

Probabilities in Binary Response Models
• Two different brands of predicted probabilities: 

– Cluster-specific probabilities
• Takes into account the clustering, hierarchical structure in the data. 

• RI and RC models fit cluster specific probabilities: Pr(Y=1 | ζ, x)

– Marginal, or “population-averaged,” probabilities
• Marginal with respect to the random effects; plain-vanilla logit and 

probit produces marginal, PA probabilities: Pr(Y=1 | x). They don’t 
depend on ζ, because we’re not modeling it.

• To generate marginal probabilities from an RI or RC model, need 
to integrate out ζ, as on p. 254 (eq. 6.7). 

• See page 255 in RH&S; difference between cluster-specific and 
marginal probabilities.



Probabilities in Binary Response Models
• Generating cluster-specific probabilitiesafter running a 

gllamm model; use the “gllapred” command.

gllapred cs_prob, mu

• This will generate a predicted prob for observations in the 
sample, using the cluster’s particular ζ. See pp. 269-70. 

• Generating marginal, or PA, probabilities after running a 
gllamm model:

gllapred marg_prob, mu marginal


