Single Variable Calculus II

Math 32 Section 10
Summer 2008

Instructor: Frank Baginski
Hall of Government Room 224
Department of Mathematics
2115 G Street NW
CONTACT: baginski@gwu.edu
202-994-6269
COURSE INFO: http://home.gwu.edu/~baginski/baginski.html
Office Hours: M,Tu,W,Thu: 02:30 - 03:30 PM by appointment (Gov 224)

Textbook: Calculus. Early Transcendentals. by James Stewart, 6th Edition, Brooks/Cole, 2008

GRading Policy:				GUIDELINES:	
3 Exams (lowest dropped):	50%		A:	$100-90 \%$	
3 Collected homeworks:	20%		B:	$89-80 \%$	
1 Comprehensive Final:	30%		C:	$79-70 \%$	
Total:	100%		D:	$69-60 \%$	

	Location	Day	Time
Math 32.10	Old Main 305	M, Tu, W, Th	$06: 00-07: 30 \mathrm{PM}$

- If for some reason you are unable to take an exam at the announced time, you must notify me in advance with an appropriate excuse. Otherwise a zero will be recorded.
- Homework must be handed in on the announced day.
- Your final grade will be based on the above Policy \& Guidelines. For example, if you score 90% on all homeworks and exams, you will receive a Course Grade of A. After all the exams and homeworks are totaled, the cutoffs may be adjusted slightly (e.g., an 89% course average will get an A , but the cutoffs will not be raised).

- Calculators are not allowed on exams.

- Homework
- The best way to learn the material and do well on exams is to do as many of the Homework Exercises as possible. Do a little bit every day.
- Selected homework exercises will be collected and graded, but after each lecture, you are strongly encouraged to work all of the exercises indicated on page 2.

Homework Exercises

For Stewart, Ed. 6: Calculus. Early Transcendentals

Lecture No.	Date	Section	Topic	Homework
1	May 19	6.1	Area between curves	p 420: 3,6,9,..., 30
2	May 20	6.2	Volumes	p 430: 3,6, 9, ..., 30
3	May 21	$\begin{aligned} & \hline 6.3 \\ & 6.5 \end{aligned}$	Volumes by cylindrical shells Average value of a function	$\begin{aligned} & \text { p 436: 3,6, 9, ... 24; 29,30, 39, } 41 \\ & \text { p 445: 36,6,9,13, } 17 \end{aligned}$
4	May 22	7.1	Homework I collected Integration by parts	p 457: 3,6,9,...,36; 45, 48
	May 26		Holiday	
5	May 27	$\begin{aligned} & \hline 7.2 \\ & 7.3 \\ & \hline \end{aligned}$	Integrals with trig functions Trig substitution	$\begin{aligned} & \hline \text { p 465: } 3,6,9, \ldots, 48 ; 68 \\ & \text { p 472: } 3,6,9, \ldots, 33 \\ & \hline \end{aligned}$
6	May 28	7.4	Integrals of rational functions	p 481: 3,6,9,...,48; 55, 56
7	May 29	7.5	Exam 1 (50 min) Integration strategies	p 488: 3,6,9,..., 81
8	Jun 02	7.7	Approximating integrals	p 505: 7,9,11
9	Jun 03	7.8	Improper Integrals	p 515: 3,6,9,..., 42; 51, 54, 69
10	Jun 04	$\begin{aligned} & 8.1 \\ & 8.2 \\ & \hline \end{aligned}$	Homework II collected Arc length Surface of revolution	$\begin{aligned} & \text { p 530: } 3,6,9, \ldots, 18 \\ & \text { p 537: } 3,6,9,11,12,15 ; 25 \\ & \hline \end{aligned}$
11	Jun 05	$\begin{gathered} \hline 8.3 \\ 10.1 \end{gathered}$	Applications Parametric Curves	$\begin{aligned} & \text { p 547: } 3,6,9,11,25,27,29 \\ & \text { p 626: } 3,6,9, \ldots, 24 ; 31 \\ & \hline \end{aligned}$
12	Jun 09	$\begin{aligned} & 10.2 \\ & 10.3 \\ & \hline \end{aligned}$	Calculus of parametric curves Polar coordinates	$\begin{aligned} & \text { p 636: 3,6, 12, 15, 18; 25, 41, } 42 \\ & \text { p 647: } 3,6,9, \ldots, 45 ; 57,61 \\ & \hline \end{aligned}$
13	Jun 10	10.4	Exam II (50 min) Area \& length in polar coord.	p 653: 3,6,9,..,48
14	Jun 11	$\begin{aligned} & \hline 11.1 \\ & 11.2 \\ & \hline \end{aligned}$	Sequences Series	p 684: $3,6,9, \ldots, 45,61,64$ p 694: $3,6,9, \ldots, 33,42,45,49$
15	Jun 12	$\begin{aligned} & \hline 11.3 \\ & 11.4 \\ & \hline \end{aligned}$	Integral test Comparison test	p 703: $3,6,9, \ldots, 30$ p 709: $3,6,9, \ldots, 36 ; 43,44$
16	Jun 16	11.5	Alternating series	p 713: 3,6,9,..., 18; 24
17	Jun 17	11.6	Exam III (50 min) Abs. convergence, ratio and root tests	p 719: 3,6,9,.., 33
18	Jun 18	11.7	Strategies for convergence of series	p 722: 3,6,9,..., 36
19	Jun 19	11.8	Power series	p 727: 3,6,9,...,18; 24, 27, 32
20	Jun 23	11.9	Functions as power series	p 733: 3,6,9,...,24; 35
21	Jun 24	11.10	Homework III collected Taylor and Mac Laurin series	p 746: 3,6,9,..., 33; 55. 59, 63, 66, 68
22	Jun 25	11.11	Application of Taylor's series	p 755: 3,6,9,..., 21
23	Jun 26		Final Comprehensive Exam	

Instruction key for assignments

$1,3,5, \ldots, 2 N+1$	\Longrightarrow	Do every odd problem
$3,6,9, \ldots, 3 N$	\Longrightarrow	Do every third problem

