INTRODUCTION

Graph-based representations are ubiquitous in many applications such as social networks, biology networks, and cybersecurity. Meanwhile, concurrent graph traversal serves as a building block for graph algorithms such as shortest path, reachability, and centrality.

MOTIVATION

Frontier sharing ratio for top-down improves by 450x and bottom-up 75%.

SYSTEM DESIGN

- **Expansion**
- **Inspection**
- **Status Array**
- **FQ Generation**
- **Frontier Queue**

GROUPBY

- **Rule 1**: The outdegress of two source vertices are less than \(p \).
- **Rule 2**: Two source vertices connect to at least one common vertex whose outdegree is greater than \(q \).

JOINT TRAVERSAL

- **Joint Frontier Queue (JFQ)**
- **Joint Expansion**
- **Joint Status Array (JSA)**

BITWISE OPTIMIZATION

Pack statuses of multiple traversals in one variable.

CONCLUSION

Joint traversal improves performance by 40%, Bitwise optimization additional 11x, and GroupBy additional 2x.

iBFS is able to accelerate concurrent traversals by up to 30x and scale to more than 112 GPUs, achieving 52,267 billion TEPS.