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This Supplement is organized as follows: Section 1 presents an examination of the non-normality

case. Section 2 provides an example that illustrates the theoretical results of our paper. Section 3

contains summary tables on the portfolio-choice implications of VaR and CVaR constraints.

1. Non-Normality

Suppose that security rates of return do not have a multivariate normal or t-distribution. We

now present an example of a family of probability distribution functions under which the implica-

tions are even more perverse than those described in Section 3.1 Consider a sequence of portfolios

with rates of return {rn}
∞

n=1
. For every n ≥ 1, suppose that rate of return rn has: (i) a uniform

distribution on [−6%− n/100,−1%] conditional on the rate of return being lower than or equal to

−1%, (ii) a uniform distribution on (−1%, 11%) conditional on the rate of return being greater than

−1% but lower than 11%, and (iii) a uniform distribution on [11%, 16% + n/100] conditional on

the rate of return being greater than or equal to 11%. Furthermore, assume that Prob[rn ≤ −1%]

= Prob[rn ≥ 11%] = 0.5%.2

It is easy to show that for every n ≥ 1, E[rn] = 5% and, by examining the probability distribu-

tion function of each portfolio that V [0.99, rn] = 0.94%.However, σ2[rn] ≈ 10−7
(
3n2 + 93n+ 12,623

)
,

1Alexander and Baptista (2003) similarly examine arbitrary distributions in evaluating portfolio performance using

VaR.
2While these distributions are symmetric, examples with similar results can be constructed in which the distribu-

tions are skewed.
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which converges to infinity as n → ∞.3 Furthermore, L[0.99, rn] ≈ 10−4 (25n+ 223) , which also

converges to infinity as n→∞.

This example illustrates that the implications of a VaR-based risk management system can be

even more perverse under non-normality. Specifically, a portfolio manager facing a VaR constraint

may select a portfolio with an arbitrarily large standard deviation and CVaR. In contrast, a portfolio

manager facing a CVaR constraint would not be able to select a portfolio with an arbitrarily large

standard deviation. Under these circumstances, a CVaR constraint is therefore a more effective

risk management tool than a VaR constraint.

2. Example

The following example illustrates that our theoretical results are plausible in practical appli-

cations. The example consists of solving an agent’s problem of finding how to allocate his or her

wealth among ten asset classes: five involve U.S. securities (large stocks, small stocks, corporate

bonds, Treasury bonds, and real estate investment trusts (REITs)), and five involve foreign se-

curities (stocks in Canada, U.K., Germany, Switzerland, and emerging markets).4 The following

indices are used to measure the rates of return on these asset classes: the S&P 500 index (large

stocks), the Russell 2000 index (small stocks), the Merrill Lynch U.S. corporate and Treasury bond

indices, the index for all publicly traded REITs provided by the National Association of Real Es-

tate Investment Trusts, and the Morgan Stanley Capital International (MSCI) indices for Canada,

U.K., Germany, Switzerland, and emerging markets.5 Sample means, variances, and covariances
3Note that the portfolio’s VaR cannot be computed using a linear transformation of the two first moments of its

rate of return distribution as shown in equation (3). Consequently, a VaR constraint in this example does not have

the simple representation provided in equation (10). All portfolios in the example lie on a single point in mean-VaR

space and on a horizontal line in mean-standard deviation space.
4This is a common use of the mean-variance model as noted by, e.g., Sharpe (1987), Solnik (1991), Black and

Litterman (1992), and Michaud (1998). For a practical example, see the website of Russell/Mellon Analytical Services

(http://www.russellmellon.com/products/desktoptools/atm/ATM.pdf).
5We include dividends in the computation of the rates of return for the stock and REITs indices. The Merrill
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that are associated with the indices were computed using annual data for the period 1987-2001 and

then used as optimization inputs.6

2.1. Efficient Frontiers

With the aforementioned inputs,
√
D/C = 1.55. Since z0.9393 = k0.8483 = 1.55, Corollary 4

implies the following. First, if t ≤ 0.8483, then the mean-VaR and mean-CVaR efficient frontiers

are empty. Second, if 0.8483 < t ≤ 0.9393, then the mean-VaR efficient frontier is empty, but the

mean-CVaR efficient frontier is a non-empty proper subset of the mean-variance efficient frontier.

Finally, if t > 0.9393, then the mean-VaR efficient frontier is a non-empty proper subset of the

mean-CVaR efficient frontier, and in turn the mean-CVaR efficient frontier is a non-empty proper

subset of the mean-variance efficient frontier.

For brevity, suppose that t = 0.99. The minimum variance, minimum CVaR, and minimum

VaR portfolios are characterized by:

E[rmσ
] = 2.97%, σ[rmσ

] = 3.78%, (A1)

E[rmL(0.99)
] = 7.16%, σ[rmL(0.99)

] = 4.65%, (A2)

E[rmV (0.99)
] = 8.20%, σ[rmV (0.99)

] = 5.07%. (A3)

Proposition 2, Corollary 4, and equations (A1), (A2), and (A3) imply the following. First, any

mean-variance efficient portfolio w with 2.97% ≤ E[rw] < 7.16% is neither mean-VaR nor mean-

CVaR efficient. Second, any mean-variance efficient portfolio w with 7.16% ≤ E[rw] < 8.20% is

mean-VaR inefficient but mean-CVaR efficient. Finally, any mean-variance efficient portfolio with

E[rw] ≥ 8.20% is both mean-VaR and mean-CVaR efficient.

Lynch U.S. corporate bond and Treasury bond indices include bonds with maturity equal to or greater than one year.

The MSCI emerging markets index includes stocks that are traded in 26 countries.
6Michaud (1998, p. 12) notes that this is sometimes done in practical applications. For simplicity, we do not make

an adjustment for estimation risk (see, e.g., Michaud (1998)).
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2.2. Portfolio-Choice Implications of VaR and CVaR Constraints

We now illustrate the portfolio-choice implications of the constraints when L = V . Using

equations (A1), (A2), and (A3), the bound L is: (i) large if L ≥ L[0.99, rmσ
] = 7.11%, (ii)

moderate if V [0.99, rmσ
] = 5.82% ≤ L < 7.11% = L[0.99, rmσ

], and (iii) small if L[0.99, rmL(0.99)
] =

5.23% ≤ L < 5.82% = V [0.99, rmσ
]. Hence, we use the values 8%, 6%, and 5.25% as examples of,

respectively, large, moderate, and small bounds.

2.2.1. Highly Risk-Averse Agent

Consider a highly risk-averse agent whose unconstrained optimal portfolio wh has an expected

rate of return relatively close to E[rmσ
] = 2.97%, say E[rwh ] = 3.25%. Since σ[rwh ] = 3.79%,

equations (3) and (4) imply that V [0.99, rwh ] = 5.56% and L[0.99, rwh ] = 6.84%. First, assume the

bound is large, i.e., L = 8%. Since L > L[0.99, rwh ] > V [0.99, rwh ], imposing either the VaR or

CVaR constraint does not change the optimal portfolio.

Second, assume the bound is moderate, i.e., L = 6%. Since L > V [0.99, rwh ], imposing the

VaR constraint does not change the optimal portfolio. However, since L < L[0.99, rwh ], equation

(16) implies that the standard deviation of the CVaR-constrained optimal portfolio is 3.89%, so its

relative increase is 2.63% [= (3.89− 3.79)/3.79].

Finally, assume the bound is small, i.e., L = 5.25%. Note that L < V [0.99, rwh ] < L[0.99, rwh ].

Since equation (18) implies that the standard deviation of the VaR-constrained optimal portfolio

is 3.80%, its relative increase is only 0.45% [= (3.80 − 3.79)/3.79]. Similarly, since equation (16)

implies that the standard deviation of the CVaR-constrained optimal portfolio is 4.47%, its relative

increase is 17.96% [= (4.47− 3.79)/3.79].

2.2.2. Slightly Risk-Averse Agent

Consider a slightly risk-averse agent whose unconstrained optimal portfolio ws has a relatively

large expected rate of return, say E[rws ] = 16%. Since σ[rws ] = 9.22%, equations (3) and (4) imply
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that V [0.99, rws ] = 5.45% and L[0.99, rws ] = 8.58%. First, assume the bound is large, i.e., L = 8%.

Note that L > V [0.99, rws ], so imposing the VaR constraint does not change the optimal portfolio.

However, L < L[0.99, rws ]. Hence, equation (15) implies that the standard deviation of the CVaR-

constrained optimal portfolio is 8.62%, for a relative decrease of 6.57% [= (9.22− 8.62)/9.22].

Second, assume the bound is moderate, i.e., L = 6%. The analysis is similar to that when

L = 8%. Imposing the VaR constraint does not change the optimal portfolio. However, since

equation (15) implies that the standard deviation of the CVaR-constrained optimal portfolio is

6.28%, its relative decrease is 31.88% [= (9.22− 6.28)/9.22].

Finally, assume the bound is small, i.e., L = 5.25%. Note that L < V [0.99, rws ] < L[0.99, rws ].

Since equation (17) implies that the standard deviation of the VaR-constrained optimal portfolio

is 8.90%, its relative decrease is only 3.54% [= (9.22− 8.90)/9.22]. Similarly, equation (15) implies

that the standard deviation of the CVaR-constrained optimal portfolio is 4.85%, for a relative large

decrease of 47.39% [= (9.22− 4.85)/9.22].

2.3. Implementing the CVaR Constraint

Suppose now that equations (19) and (20) are used to find the CVaR bound when V = 5.25%.

We consider (i) the highly risk-averse agent who, as mentioned earlier, had an unconstrained optimal

portfolio wh with E[rwh ] = 3.25%, σ[rwh ] = 3.79%, V [0.99, rwh ] = 5.56%, and L[0.99, rwh ] = 6.84%,

and (ii) the slightly risk-averse agent who, again as mentioned earlier, had an unconstrained optimal

portfolio ws with E[rws ] = 16%, σ[rws ] = 9.22%, V [0.99, rws ] = 5.45%, and L[0.99, rws ] = 8.58%.

First, using equation (19), we have L= 6.54% so that the constrained optimal portfolios coincide

for the highly risk-averse agent, but not for the slightly risk-averse agent. Since equation (15)

implies that the standard deviation of the CVaR-constrained optimal portfolio of the slightly risk-

averse agent is 6.97%, its relative decrease is 24.36% [= (9.22− 6.97)/9.22]. However, the standard

deviation of the agent’s VaR-constrained optimal portfolio is again 8.90%, for a relative decrease

of only 3.54% [= (9.22− 8.90)/9.22].
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Second, using equation (20), we have L = 8.26% so that the constrained optimal portfolios

coincide for the slightly risk-averse agent, but not for the highly risk-averse agent. Since L >

L[0.99, rwh ] = 6.84%, imposing the CVaR constraint does not change the optimal portfolio of the

highly risk-averse agent. However, the standard deviation of the agent’s VaR-constrained optimal

portfolio is again 3.80%, for a relative increase of 0.45% [= (3.80− 3.79)/3.79].

Finally, assume 6.54% = L < L < L = 8.26%, say L = 7.40%. Since L > L[0.99, rwh ] = 6.84%,

imposing the CVaR constraint does not change the optimal portfolio of the highly risk-averse

agent, but the VaR-constrained optimal portfolio has again a standard deviation of 3.80%, for

a relative increase of 0.45% [= (3.80 − 3.79)/3.79]. Given that equation (15) implies that the

standard deviation of the CVaR-constrained optimal portfolio of the slightly risk-averse agent is

7.97%, its relative decrease is 13.58% [= (9.22 − 7.97)/9.22]. However, the standard deviation of

the agent’s VaR-constrained optimal portfolio is again 8.90%, for a relative decrease of only 3.54%

[= (9.22 − 8.90)/9.22]. Hence, the CVaR constraint results in portfolios with smaller standard

deviations for both types of agents.

2.4. Adding a Riskfree Security

In December 2001, the yield on a one-year Treasury security was approximately 2%.7 Hence,

we assume that a riskfree security with rate of return rf = 2% is available. With this input,

√
H = 1.57. Since z0.9418 = k0.8545 = 1.57, Corollary 5 implies the following. First, if t ≤ 0.8545,

then the mean-VaR and mean-CVaR efficient frontiers are empty. Second, if 0.8545 < t ≤ 0.9418,

then the mean-VaR efficient frontier is empty, but the mean-CVaR efficient frontier coincides with

the mean-variance efficient frontier. Finally, if t > 0.9418, then the mean-VaR, mean-CVaR, and

mean-variance efficient frontiers coincide.

For brevity, assume that t = 0.99 and L = V = 4%.8 First, consider a highly risk-averse

7See http://www.federalreserve.gov/releases/h15/data/m/tcm1y.txt.
8If, for example, L = V = −3% < −rf = −2% and t = 0.85, then the perverse results described in footnote 18
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agent whose unconstrained optimal portfolio wh has a relatively small expected rate of return, say

E[rwh ] = 8%. Since σ[rwh ] = 3.82%, equations (3) and (4) imply that V [0.99, rwh ] = 0.89% and

L[0.99, rwh ] = 2.19%. Note that L > L[0.99, rwh ] > V [0.99, rwh ]. Hence, imposing either the VaR

or CVaR constraint does not change the optimal portfolio.

Second, consider a slightly risk-averse agent whose unconstrained optimal portfolio ws has a

relatively large expected rate of return, say E[rws ] = 16%. Since σ[rws ] = 8.92%, equations (3)

and (4) imply that V [0.99, rws ] = 4.74% and L[0.99, rws ] = 7.77%. Note that both constraints

bind, as L < V [0.99, rws ] < L[0.99, rws ]. The standard deviation of the VaR-constrained optimal

portfolio is 7.93%, for a relative decrease of 11.04% [= (8.92− 7.93)/8.92]. Similarly, the standard

deviation of the CVaR-constrained optimal portfolio is 5.48%, for a relative decrease of 38.57%

[= (8.92− 5.48)/8.92]. Hence, the standard deviation of the CVaR-constrained optimal portfolio is

notably smaller than that of the VaR-constrained optimal portfolio.9

hold. However, it is debatable whether such situation would arise in practice as it is akin to requiring an agent to

select a portfolio that with 85% confidence will outperform the riskfree security by 1%.
9If the unconstrained optimal portfolio has an expected rate of return of 12%, then it satisfies the VaR constraint

but does not satisfy the CVaR constraint. The relative decrease of the optimal portfolio’s standard deviation arising

from the imposing the CVaR constraint is 14% [= (6.37− 5.48)/6.37].
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3. Summary Tables

Table 1
Impact of a VaR or CVaR constraint within a mean-variance model on portfolio efficiency and selectiona

(a) Mean-variance efficient portfolios that are precluded by the presence of a VaR or CVaR constraintb

Bound L=V
Confidence level t Constraint Large Moderate Small

Low VaR
CVaR

none
none

none
small σ

small σ
small σ

Moderate VaR
CVaR

none
large σ

none
small and large σ

small σ
small and large σ

High VaR
CVaR

large σ
large σ

large σ
small and large σ

small and large σ
small and large σ

(b) Impact of a VaR constraint on the standard deviation of an agent’s optimal portfolioc

Bound V
Confidence level t Agent Large Moderate Small

Low or
Moderate

Highly risk-averse
Slightly risk-averse

no effect
no effect

no effect
no effect

increase
no effect

High Highly risk-averse
Slightly risk-averse

no effect
decrease

no effect
decrease

increase
decrease

(c) Impact of a CVaR constraint on the standard deviation of an agent’s optimal portfoliod

Bound L
Confidence level t Agent Large Moderate Small

Low Highly risk-averse
Slightly risk-averse

no effect
no effect

increase
no effect

increase
no effect

Moderate
or High

Highly risk-averse
Slightly risk-averse

no effect
decrease

increase
decrease

increase
decrease

a We assume that there is no riskfree security. The confidence level is: (i) low if CDk t≤ , (ii) moderate if tt kCDz <≤ , and (iii) high if CDzt > .

The bound is: (i) large if ],,[ σmrtLVL ≥= (ii) moderate if ],[],[ σσ mm rtLVLrtV <=≤ , and (iii) small if ],[ σmrtVVL <= .
b The entries in the cells show the characteristics of the portfolios that are precluded.
c The impact is measured relative to the agent’s optimal portfolio in the absence of the VaR constraint.
d The impact is measured relative to the agent’s optimal portfolio in the absence of the CVaR constraint.
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Table 2
Constraint that results in the smallest standard deviation for the optimal portfolioa

(a) CVaR and VaR bounds coincide
Bound L

Confidence level t Agent Large Moderate Small
Low Highly risk-averse

Slightly risk-averse
both
both

VaR
both

VaR
both

Moderate or
High

Highly risk-averse
Slightly risk-averse

both
CVaR

VaR
CVaR

VaR
CVaR

(b) CVaR bound appropriately larger than VaR boundb

Bound L
Confidence level t Agent Maximum Intermediate Minimum

Low Highly risk-averse
Slightly risk-averse

NA
NA

CVaR
both

both
both

Moderate Highly risk-averse
Slightly risk-averse

NA
NA

CVaR
CVaR

both
CVaR

High Highly risk-averse
Slightly risk-averse

CVaR
both

CVaR
CVaR

both
CVaR

a We assume that there is no riskfree security. The confidence level is: (i) low if CDk t≤ , (ii) moderate if tt kCDz <≤ , and (iii) high if

CDzt > . The bound is: (i) large if ],,[ σmrtLVL ≥= (ii) moderate if ],[],[ σσ mm rtLVLrtV <=≤ , and (iii) small if ],[ σmrtVVL <= .
b The CVaR bound is determined by equations (19) and (20), i.e., LLL ≤≤ . ‘NA’ means ‘does not apply.’
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