Online Appendix for

"Portfolio Selection with Mental Accounts and Background Risk"

Alexandre M. Baptista

The George Washington University

This Appendix contains proofs of the theoretical results in the paper "Portfolio Selection with Mental Accounts and Background Risk" published in the *Journal of Banking and Finance* **36**, 968–980, April 2012.

The following three results are useful in our proof of Theorem 1.

Lemma 1. Fix an account $m \in \{1, ..., M\}$ and a level of expected return $E \in \mathbb{R}$ for it. The portfolio that minimizes account m's variance subject to the restriction that the account has an expected return of E is given by:

$$\boldsymbol{w}_E \equiv \underline{\boldsymbol{w}}_m + \phi_E \left(\boldsymbol{w}_1 - \boldsymbol{w}_0 \right) \tag{16}$$

where $\phi_E = \frac{E - \underline{E}_m}{B/A - A/C}$. Furthermore, we have:

1

$$\sigma[r_{\boldsymbol{w}_E,m}] = \sqrt{\underline{\sigma}_m^2 + \frac{(E[r_{\boldsymbol{w}_E,m}] - \underline{E}_m)^2}{D/C}}.$$
(17)

Proof. Fix an account $m \in \{1, ..., M\}$ and a level of expected return $E \in \mathbb{R}$ for it. The portfolio that minimizes account m's variance subject to the restriction that the account has an expected return of E solves:

$$\min_{\boldsymbol{w}\in\mathbb{R}^{N}} \frac{1}{2} \left(\boldsymbol{w}' \boldsymbol{\Sigma} \boldsymbol{w} + \Omega_{mm} + 2\boldsymbol{w}' \boldsymbol{\Psi}_{m} \right)$$
(18)

$$s.t. \quad \boldsymbol{w}' \boldsymbol{1} = 1 \tag{19}$$

$$\boldsymbol{w}'\boldsymbol{\mu} = \boldsymbol{E} - \boldsymbol{\nu}_m. \tag{20}$$

A first-order condition for \boldsymbol{w}_E to solve problem (18) subject to constraints (19) and (20) is:

$$\Sigma \boldsymbol{w}_E + \boldsymbol{\Psi}_m - \varphi_1 \boldsymbol{1} - \varphi_2 \boldsymbol{\mu} = \boldsymbol{0}, \tag{21}$$

where **0** is the $N \times 1$ vector $[0 \cdots 0]'$, and φ_1 and φ_2 are multipliers associated to these constraints. Using Eq. (21), we have:

$$\boldsymbol{w}_E = \varphi_1 \boldsymbol{\Sigma}^{-1} \boldsymbol{1} + \varphi_2 \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} - \boldsymbol{\Sigma}^{-1} \boldsymbol{\Psi}_m.$$
(22)

Premultiplying Eq. (21) by $\mathbf{1}'$ and using Eq. (19), we obtain:

$$1 = \varphi_1 C + \varphi_2 A - A_m. \tag{23}$$

Premultiplying Eq. (21) by μ' and using Eq. (20), we obtain:

$$E - \nu_m = \varphi_1 A + \varphi_2 B - B_m, \tag{24}$$

where $B_m \equiv \mu' \Sigma^{-1} \Psi_m$. Eqs. (23) and (24) imply that:

$$\varphi_1 = \frac{1 + A_m - \varphi_2 A}{C} \tag{25}$$

and

$$\varphi_2 = \frac{E - (1 + A_m) A/C - \nu_m + B_m}{B - A^2/C}.$$
(26)

Noting that $\underline{E}_m = (1 + A_m) \frac{A}{C} + \nu_m - B_m$, Eq. (16) follows from Eqs. (22), (25), and (26), and the definitions of \underline{w}_m , w_0 , and w_1 . Using Eq. (22), we have:

$$\sigma[r_{\boldsymbol{w}_E,m}] = \sqrt{\varphi_1^2 C + 2\varphi_1 \varphi_2 A + \varphi_2^2 B + \Omega_{mm} - C_m},$$
(27)

where $C_m \equiv \Psi'_m \Sigma^{-1} \Psi_m$. Eqs. (25) and (27) imply that:

$$\sigma[r_{\boldsymbol{w}_E,m}] = \sqrt{\left(\frac{1+A_m-\varphi_2 A}{C}\right)^2 C + 2\left(\frac{1+A_m-\varphi_2 A}{C}\right)\varphi_2 A + \varphi_2^2 B + \Omega_{mm} - C_m}.$$
 (28)

Using Eq. (28) and elementary algebra, we have:

$$\sigma[r_{w_E,m}] = \sqrt{\frac{(1+A_m)^2}{C} + \Omega_{mm} - C_m + \varphi_2^2 \left(B - \frac{A^2}{C}\right)}.$$
(29)

Noting that $\underline{\sigma}_m^2 = \frac{(1+A_m)^2}{C} + \Omega_{mm} - C_m$, Eq. (17) follows from Eqs. (26) and (29).

Lemma 2. If $\alpha_m < \Phi(-\sqrt{D/C})$, then $V[1 - \alpha_m, r_{\underline{\underline{w}}_m, m}] = -H_{\alpha_m}$.

Proof. Suppose that $\alpha_m < \Phi(-\sqrt{D/C})$. Using Eq. (4), $\underline{\underline{w}}_m$ minimizes account *m*'s variance subject to the restriction that the account has an expected return of $E[r_{\underline{\underline{w}}_m,m}]$. Lemma 1 implies that $E[r_{\underline{\underline{w}}_m,m}]$ solves:

$$\min_{E \in \mathbb{R}} \quad z_{\alpha_m} \sqrt{\underline{\sigma}_m^2 + \frac{(E - \underline{E}_m)^2}{D/C}} - E.$$
(30)

A first-order condition for $E[r_{\underline{\underline{w}}_m,m}]$ to solve problem (30) is:

$$z_{\alpha_m} \frac{(E[r_{\underline{\underline{w}}_m,m}] - \underline{\underline{E}}_m)/(D/C)}{\sqrt{\underline{\sigma}_m^2 + (E[r_{\underline{\underline{w}}_m,m}] - \underline{\underline{E}}_m)^2/(D/C)}} - 1 = 0.$$
(31)

It follows from Eq. (31) that:

$$E[r_{\underline{\underline{w}}_m,m}] = \sqrt{\frac{(D/C)^2 \,\underline{\sigma}_m^2}{z_{\alpha_m}^2 - D/C}} + \underline{E}_m. \tag{32}$$

Using Eqs. (17) and (32), we have:

$$\sigma[r_{\underline{\underline{w}}_m,m}] = \sqrt{\frac{z_{\alpha_m}^2 \underline{\sigma}_m^2}{z_{\alpha_m}^2 - D/C}}.$$
(33)

Eqs. (4), (32), and (33) imply the desired result. \Box

Lemma 3. Fix any account $m \in \{1, ..., M\}$ with $\alpha_m < \Phi(-\sqrt{D/C})$ and $H_m \leq H_{\alpha_m}$. The optimal portfolio within account m is given by $\boldsymbol{w}_m = \boldsymbol{w}_E$ for same $E \in \mathbb{R}$ with $E > \underline{E}_m$. Furthermore, we have $V[1 - \alpha_m, r_{\boldsymbol{w}_m, m}] = -H_m$.

Proof. Fix any account $m \in \{1, ..., M\}$ with $\alpha_m < \Phi(-\sqrt{D/C})$ and $H_m \leq H_{\alpha_m}$. First, we show that $\boldsymbol{w}_m = \boldsymbol{w}_E$ for some $E \in \mathbb{R}$. Suppose by way of a contradiction that $\boldsymbol{w}_m \neq \boldsymbol{w}_E$, where $E = E[r_{\boldsymbol{w}_m,m}]$. It follows from Lemma 1 that $\sigma[r_{\boldsymbol{w}_E,m}] < \sigma[r_{\boldsymbol{w}_m,m}]$. Since $E[r_{\boldsymbol{w}_E,m}] = E[r_{\boldsymbol{w}_m,m}]$ and $\sigma[r_{\boldsymbol{w}_E,m}] < \sigma[r_{\boldsymbol{w}_m,m}]$, Eq. (4) implies that:

$$V[1 - \alpha_m, r_{\boldsymbol{w}_E, m}] < V[1 - \alpha_m, r_{\boldsymbol{w}_m, m}].$$

$$(34)$$

Fix any $E_1 \in \mathbb{R}$ with $E_1 > E[r_{\boldsymbol{w}_m,m}]$. Let $\varepsilon > 0$ be arbitrarily small. Consider portfolio $\boldsymbol{w}_{\varepsilon}$ $\equiv \varepsilon \boldsymbol{w}_{E_1} + (1-\varepsilon) \boldsymbol{w}_E$. Note that:

$$E[r_{\boldsymbol{w}_{\varepsilon},m}] > E[r_{\boldsymbol{w}_{E},m}]. \tag{35}$$

Since ε is arbitrarily small, Eq. (34) implies that:

$$V[1 - \alpha_m, r_{\boldsymbol{w}_{\varepsilon}, m}] < V[1 - \alpha_m, r_{\boldsymbol{w}_m, m}]$$

$$\leq -H_m, \qquad (36)$$

where the second inequality follows from the definition of \boldsymbol{w}_m . Eqs. (35) and (36) contradict the fact that \boldsymbol{w}_m is the optimal portfolio within account m. This completes the first part of our proof.

Second, we show that $E > \underline{E}_m$. Using Eqs. (4) and (17), we have:

$$V[1 - \alpha_m, r_{\boldsymbol{w}_E, m}] = z_{\alpha_m} \sqrt{\underline{\sigma}_m^2 + (E[r_{\boldsymbol{w}_E, m}] - \underline{E}_m)^2 / (D/C)} - E[r_{\boldsymbol{w}_E, m}].$$
(37)

It follows from Eq. (37) that:

$$\frac{\partial V[1 - \alpha_m, r_{\boldsymbol{w}_E, m}]}{\partial E[r_{\boldsymbol{w}_E, m}]} = z_{\alpha_m} \frac{\left(E[r_{\boldsymbol{w}_E, m}] - \underline{E}_m\right) / (D/C)}{\sqrt{\underline{\sigma}_m^2 + \left(E[r_{\boldsymbol{w}_E, m}] - \underline{E}_m\right)^2 / (D/C)}} - 1.$$
(38)

Since $z_{\alpha_m} > 0$, Eq. (38) implies that if $E[r_{\boldsymbol{w}_E,m}] \leq \underline{E}_m$, then $\partial V[1 - \alpha_m, r_{\boldsymbol{w}_E,m}] / \partial E[r_{\boldsymbol{w}_E,m}] < 0$. Hence, we have $E > \underline{E}_m$. This completes the second part of our proof.

Third, we show that $V[1 - \alpha_m, r_{\boldsymbol{w}_m, m}] = -H_m$. Suppose by way of a contradiction that $V[1 - \alpha_m, r_{\boldsymbol{w}_m, m}] < -H_m$. Fix any $E_2 \in \mathbb{R}$ with $E_2 > E[r_{\boldsymbol{w}_m, m}]$. Let $\xi > 0$ be arbitrarily small. Consider portfolio $\boldsymbol{w}_{\xi} \equiv \xi \boldsymbol{w}_{E_2} + (1 - \xi) \boldsymbol{w}_m$. Note that:

$$E[r_{\boldsymbol{w}_{\boldsymbol{\xi}},m}] > E[r_{\boldsymbol{w}_m,m}] \tag{39}$$

and

$$V[1 - \alpha_m, r_{\boldsymbol{w}_{\mathcal{E}}, m}] < -H_m. \tag{40}$$

Eqs. (39) and (40) contradict the fact that \boldsymbol{w}_m is the optimal portfolio within account m. This completes the third part of our proof.

Proof of Theorem 1. Fix any account $m \in \{1, ..., M\}$. First, we show part (i). Suppose that $\alpha_m \ge \Phi(-\sqrt{D/C})$. Then:

$$0 < z_{\alpha_m} \le \sqrt{D/C}.\tag{41}$$

Fix any $E \in \mathbb{R}$. Note that:

$$\frac{\left(E[r_{\boldsymbol{w}_{E},m}]-\underline{E}_{m}\right)/\left(D/C\right)}{\sqrt{\underline{\sigma}_{m}^{2}+\left(E[r_{\boldsymbol{w}_{E},m}]-\underline{E}_{m}\right)^{2}/\left(D/C\right)}} < \frac{1}{\sqrt{D/C}}.$$
(42)

It follows from Eqs. (38), (41), and (42) that:

$$\frac{\partial V[1 - \alpha_m, r_{\boldsymbol{w}_E, m}]}{\partial E[r_{\boldsymbol{w}_E, m}]} < 0.$$
(43)

Eq. (43) implies that the optimal portfolio within account m does not exist.

Suppose that $\alpha_m < \Phi(-\sqrt{D/C})$ and $H_m > H_{\alpha_m}$. Note that $-H_m < -H_{\alpha_m} = V[1-\alpha_m, r_{\underline{w}_m, m}]$. Hence, there exists no portfolio w that meets constraint (5). Therefore, the optimal portfolio within account m does not exist. This completes our proof of part (i).

Second, we show part (ii). Suppose that $\alpha_m < \Phi(-\sqrt{D/C})$ and $H_m \le H_{\alpha_m}$. Using Lemma 3, we have $E[r_{\boldsymbol{w}_m,m}] > \underline{E}_m$. Hence, it follows from Lemma 3 and Eq. (17) that:

$$E[r_{\boldsymbol{w}_m,m}] = \underline{E}_m + \sqrt{D/C \left(\sigma^2[r_{\boldsymbol{w}_m,m}] - \underline{\sigma}_m^2\right)}.$$
(44)

Using Eqs. (4), (44) and Lemma 3, we have:

$$z_{\alpha_m}\sigma[r_{\boldsymbol{w}_m,m}] - \underline{\underline{E}}_m - \sqrt{D/C\left(\sigma^2[r_{\boldsymbol{w}_m,m}] - \underline{\sigma}_m^2\right)} = -H_m.$$
(45)

It follows from Eq. (45) that:

$$\zeta_1 \sigma^2[r_{\boldsymbol{w}_m,m}] + \zeta_2 \sigma[r_{\boldsymbol{w}_m,m}] + \zeta_3 = 0, \tag{46}$$

where $\zeta_1 \equiv z_{\alpha_m}^2 - D/C$, $\zeta_2 \equiv -2z_{\alpha_m} (\underline{E}_m - H_m)$, and $\zeta_3 \equiv (\underline{E}_m - H_m)^2 + (D/C) \underline{\sigma}_m^2$. Using Eq. (46), we have:

$$\sigma[r_{\boldsymbol{w}_m,m}] = \frac{z_{\alpha_m} \left(\underline{E}_m - H_m\right) \pm \sqrt{\left(D/C\right) \left[\left(\underline{E}_m - H_m\right)^2 - \left(z_{\alpha_m}^2 - D/C\right)\underline{\sigma}_m^2\right]}}{z_{\alpha_m}^2 - D/C}.$$
(47)

Eqs. (8)–(11) follow from Lemmas 1 and 3, and Eqs. (44) and (47). This completes our proof of part (ii). \Box

The following result is used in our proof of Corollary 1.

Lemma 4. Consider an investor with a single account who faces account m's background risk and has an objective function given by Eq. (12). The investor's optimal portfolio is:

$$\boldsymbol{w}_{\gamma_m} \equiv \underline{\boldsymbol{w}}_m + \frac{A}{\gamma_m} \left(\boldsymbol{w}_1 - \boldsymbol{w}_0 \right).$$
(48)

Proof. Consider an investor with a single account who faces account m's background risk and has an objective function given by Eq. (12). The investor's optimal portfolio solves:

$$\max_{\boldsymbol{w}\in\mathbb{R}^{N}} \quad \boldsymbol{w}'\boldsymbol{\mu} + \nu_{m} - \frac{\gamma_{m}}{2} \left(\boldsymbol{w}'\boldsymbol{\Sigma}\boldsymbol{w} + \Omega_{mm} + 2\boldsymbol{w}'\boldsymbol{\Psi}_{m} \right)$$
(49)

s.t.
$$w' \mathbf{1} = 1.$$
 (50)

A first-order condition for $\boldsymbol{w}_{\gamma_m}$ to solve problem (49) subject to constraint (50) is:

$$\boldsymbol{\mu} - \gamma_m \left(\boldsymbol{\Sigma} \boldsymbol{w}_{\gamma_m} + \boldsymbol{\Psi}_m \right) + \lambda_m \boldsymbol{1} = \boldsymbol{0}, \tag{51}$$

where λ_m is the multiplier associated with this constraint. Eq. (51) implies that:

$$\boldsymbol{w}_{\gamma_m} = \boldsymbol{\Sigma}^{-1} \left(\frac{\boldsymbol{\mu} + \lambda_m \boldsymbol{1}}{\gamma_m} - \boldsymbol{\Psi}_m \right).$$
(52)

Premultiplying Eq. (52) by $\mathbf{1}'$ and using Eq. (50), we have:

$$1 = \frac{\mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} + \lambda_m \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{1}}{\gamma_m} - \mathbf{1}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\Psi}_m.$$
(53)

Eq. (53) implies that:

$$\lambda_m = \frac{\gamma_m \left(1 + A_m\right) - A}{C}.\tag{54}$$

It follows from Eqs. (53) and (54) that:

$$\boldsymbol{w}_{\gamma_m} = (1+A_m) \, \frac{\boldsymbol{\Sigma}^{-1} \boldsymbol{1}}{C} - \boldsymbol{\Sigma}^{-1} \boldsymbol{\Psi}_m + \frac{\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} - \frac{A}{C} \boldsymbol{\Sigma}^{-1} \boldsymbol{1}}{\gamma_m} \tag{55}$$

The desired result follows from Eq. (55) and the definitions of \underline{w}_m , w_0 , and w_1 .

Proof of Corollary 1. Fix any account $m \in \{1, ..., M\}$ with $\alpha_m < \Phi(-\sqrt{D/C})$ and $H_m \le H_{\alpha_m}$. The desired result follows from Eqs. (8) and (48).

Proof of Corollary 2. Fix any account $m \in \{1, ..., M\}$ with $\alpha_m < \Phi(-\sqrt{D/C})$ and $H_m \le H_{\alpha_m}$. First, we show the 'if' part. Suppose that $\Psi_m = \delta_1 \mathbf{1} + \delta_2 \boldsymbol{\mu}$ for some constants δ_1 and δ_2 . Using the definition of $\underline{\boldsymbol{w}}_m$ and the assumption that $\Psi_m = \delta_1 \mathbf{1} + \delta_2 \boldsymbol{\mu}$, we have:

$$\underline{\boldsymbol{w}}_{m} = \left[1 + \mathbf{1}' \boldsymbol{\Sigma}^{-1} \left(\delta_{1} \mathbf{1} + \delta_{2} \boldsymbol{\mu}\right)\right] \boldsymbol{w}_{0} - \boldsymbol{\Sigma}^{-1} \left(\delta_{1} \mathbf{1} + \delta_{2} \boldsymbol{\mu}\right).$$
(56)

It follows from Eq. (56) that:

$$\underline{\boldsymbol{w}}_m = \boldsymbol{w}_0 - A\delta_2 \left(\boldsymbol{w}_1 - \boldsymbol{w}_0 \right). \tag{57}$$

Eqs. (8) and (57) imply that:

$$\boldsymbol{w}_m = \boldsymbol{w}_0 + (\eta_m - A\delta_2) \left(\boldsymbol{w}_1 - \boldsymbol{w}_0 \right).$$
(58)

Merton (1972) shows that a portfolio \boldsymbol{w} is on the mean-variance frontier if and only if:

$$\boldsymbol{w} = \theta \boldsymbol{w}_0 + (1 - \theta) \boldsymbol{w}_1 \tag{59}$$

for some $\theta \in \mathbb{R}$. It follows from Eqs. (58) and (59) that portfolio w_m is on the mean-variance frontier. This completes the first part of our proof.

Second, we show the 'only if' part. Suppose that \boldsymbol{w}_m is on the mean-variance frontier. Using Eqs. (8) and (59), $\underline{\boldsymbol{w}}_m$ is also on this frontier. Hence, Eq. (59) implies that:

$$\underline{\boldsymbol{w}}_m = \underline{\boldsymbol{\theta}}_m \boldsymbol{w}_0 + (1 - \underline{\boldsymbol{\theta}}_m) \boldsymbol{w}_1 \tag{60}$$

for some $\underline{\theta}_m \in \mathbb{R}$. Using the definition of \underline{w}_m in the left-hand side of Eq. (60), we obtain:

$$(1+\mathbf{1}'\boldsymbol{\Sigma}^{-1}\boldsymbol{\Psi}_m)\boldsymbol{w}_0 - \boldsymbol{\Sigma}^{-1}\boldsymbol{\Psi}_m = \underline{\theta}_m\boldsymbol{w}_0 + (1-\underline{\theta}_m)\boldsymbol{w}_1, \tag{61}$$

or equivalently:

$$\boldsymbol{\Sigma}^{-1}\boldsymbol{\Psi}_m = \left(1 + \mathbf{1}'\boldsymbol{\Sigma}^{-1}\boldsymbol{\Psi}_m - \underline{\theta}_m\right)\boldsymbol{w}_0 - (1 - \underline{\theta}_m)\boldsymbol{w}_1.$$
(62)

Premultiplying Eq. (62) by Σ , we have:

$$\Psi_m = \frac{1 + \mathbf{1}' \mathbf{\Sigma}^{-1} \Psi_m - \underline{\theta}_m}{C} \mathbf{1} - \frac{1 - \underline{\theta}_m}{A} \boldsymbol{\mu}.$$
(63)

It follows from Eq. (63) that $\Psi_m = \delta_1 \mathbf{1} + \delta_2 \boldsymbol{\mu}$ for some constants δ_1 and δ_2 . This completes the second part of our proof.

The following result is used in our proof of Corollary 3.

Lemma 5. Consider an investor with a single account who does not face background risk and has an objective function given by Eq. (13). The investor's optimal portfolio is:

$$\boldsymbol{w}_{\gamma} \equiv \boldsymbol{w}_0 + \frac{A}{\gamma} \left(\boldsymbol{w}_1 - \boldsymbol{w}_0 \right). \tag{64}$$

Proof. Consider an investor with a single account who does not face background risk and has an objective function given by Eq. (13). The investor's optimal portfolio solves:

$$\max_{\boldsymbol{w}\in\mathbb{R}^N} \quad \boldsymbol{w}'\boldsymbol{\mu} - \frac{\gamma}{2}\boldsymbol{w}'\boldsymbol{\Sigma}\boldsymbol{w}$$
(65)

s.t.
$$w' \mathbf{1} = 1.$$
 (66)

A first-order condition for w_{γ} to solve problem (65) subject to constraint (66) is:

$$\boldsymbol{\mu} - \gamma \boldsymbol{\Sigma} \boldsymbol{w}_{\gamma} - \lambda \mathbf{1} = \mathbf{0},\tag{67}$$

where λ is the multiplier associated with this constraint. Eq. (67) implies that:

$$\boldsymbol{w}_{\gamma} = \frac{\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} - \lambda \boldsymbol{\Sigma}^{-1} \boldsymbol{1}}{\gamma}.$$
 (68)

Premultiplying Eq. (68) by $\mathbf{1}'$ and using Eq. (66), we have:

$$1 = \frac{\mathbf{1}' \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} - \lambda \mathbf{1}' \boldsymbol{\Sigma}^{-1} \mathbf{1}}{\gamma}.$$
 (69)

Eq. (69) implies that:

$$\lambda = \frac{A - \gamma}{C}.\tag{70}$$

It follows from Eqs. (68) and (70) that:

$$\boldsymbol{w}_{\gamma} = \frac{\boldsymbol{\Sigma}^{-1} \boldsymbol{1}}{C} + \frac{\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} - \frac{A}{C} \boldsymbol{\Sigma}^{-1} \boldsymbol{1}}{\gamma}.$$
(71)

The desired result follows from Eq. $(71).\square$

Proof of Corollary 3. Fix any given account $m \in \{1, ..., M\}$ with $\alpha_m < \Phi(-\sqrt{D/C}), H_m \le H_{\alpha_m}$, and $\Psi_m = \delta_1 \mathbf{1} + \delta_2 \mu$ for some constants δ_1 and δ_2 . It follows that Eq. (58) holds. Eqs. (58) and (64) imply the desired result.

Proof of Theorem 2. Suppose that $\alpha_m < \Phi(-\sqrt{D/C})$ and $H_m \leq H_{\alpha_m}$ for any account $m \in \{1, ..., M\}$. Using Eq. (8), we have:

$$\boldsymbol{w}_{a} = \sum_{m=1}^{M} y_{m} \boldsymbol{\underline{w}}_{m} + \sum_{m=1}^{M} y_{m} \eta_{m} \left(\boldsymbol{w}_{1} - \boldsymbol{w}_{0} \right).$$
(72)

Noting that $\underline{w}_a = \sum_{m=1}^{M} y_m \underline{w}_m$, the desired result follows from Eq. (72).

The following result is used in our proof of Corollary 4.

Lemma 6. Consider an investor with a single account who faces the aggregate background risk and has an objective function given by Eq. (15). The investor's optimal portfolio is:

$$\boldsymbol{w}_{\gamma_a} \equiv \underline{\boldsymbol{w}}_a + \frac{A}{\gamma_a} \left(\boldsymbol{w}_1 - \boldsymbol{w}_0 \right). \tag{73}$$

Proof of Lemma 6. Similar to the proof of Lemma 4 and thus omitted. \Box

Proof of Corollary 4. Suppose that $\alpha_m < \Phi(-\sqrt{D/C})$ and $H_m \leq H_{\alpha_m}$ for any account $m \in \{1, ..., M\}$. The desired result follows from Eqs. (14) and (73).

Proof of Corollary 5. Suppose that $\alpha_m < \Phi(-\sqrt{D/C})$ and $H_m \leq H_{\alpha_m}$ for any account $m \in \{1, ..., M\}$. First, we show the 'if' part. Suppose that $\Psi_a = \delta_1 \mathbf{1} + \delta_2 \boldsymbol{\mu}$ for some constants δ_1 and δ_2 . Using arguments similar to those in the proof of Corollary 2, we have:

$$\boldsymbol{w}_a = \boldsymbol{w}_0 + (\eta_a - A\delta_2) \left(\boldsymbol{w}_1 - \boldsymbol{w}_0 \right). \tag{74}$$

It follows from Eqs. (59) and (74) that portfolio \boldsymbol{w}_a is on the mean-variance frontier. This completes the first part of our proof.

Second, we show the 'only if' part. Suppose that \boldsymbol{w}_a is on the mean-variance frontier. Using Eqs. (14) and (59), $\underline{\boldsymbol{w}}_a$ is also on this frontier. Hence, Eq. (59) implies that:

$$\underline{\boldsymbol{w}}_a = \underline{\boldsymbol{\theta}}_a \boldsymbol{w}_0 + (1 - \underline{\boldsymbol{\theta}}_a) \boldsymbol{w}_1 \tag{75}$$

for some $\underline{\theta}_a \in \mathbb{R}$. Using arguments similar to those used in the proof of Corollary 2, we have:

$$\Psi_a = \frac{1 + \mathbf{1}' \Sigma^{-1} \Psi_a - \underline{\theta}_a}{C} \mathbf{1} - \frac{1 - \underline{\theta}_a}{A} \boldsymbol{\mu}.$$
(76)

It follows from Eq. (76) that $\Psi_a = \delta_1 \mathbf{1} + \delta_2 \boldsymbol{\mu}$ for some constants δ_1 and δ_2 . This completes the second part of our proof.

Proof of Corollary 6. Suppose that $\alpha_m < \Phi(-\sqrt{D/C})$ and $H_m \leq H_{\alpha_m}$ for any account $m \in \{1, ..., M\}$, and $\Psi_a = \delta_1 \mathbf{1} + \delta_2 \boldsymbol{\mu}$ for some constants δ_1 and δ_2 . It follows that Eq. (74) holds. Eqs. (64) and (74) imply the desired result.