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Summary . Current opinion regarding the selection of link function in binary response models
is that the probit and logit links give essentially similar results. This seems to be true for uni-
variate binary response models; however, for multivariate binary response models such advice
is misleading. We address a gap in the literature by empirically examining the relationship
between link function selection and model fit in two classes of multivariate binary response
models. We find clear evidence that model fit can be improved by the selection of the appro-
priate link even in small data sets. In multivariate link function models, the logit link provides
better fit in the presence of extreme independent variable levels. Conversely, model fit in ran-
dom effects models with moderate size data sets is improved generally by selecting the probit
link.
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1. Introduction

Probit and logit models are among the most widely used members of the family of generalized lin-
ear models in the case of binary dependent variables. In probit models, the link function relating
the linear predictorη = xβ to the expected valueµ is the inverse normal cumulative distribution
function,Φ−1(µ) = η. In the logit model the link function is the logit transform,ln(µ/1− µ) = η.
The conventional wisdom is that in most cases the choice of the link function is largely a matter of
taste. For example, Greene (1997, p. 875) concludes his discussion of the issue with the summary
“in most applications, it seems not to make much difference.” Gill puts it especially plainly; in
discussing link functions including the cloglog, he indicates that they “provide identical substan-
tive conclusions” (Gill, 2001, p. 33). Elsewhere, similar advice appears regularly when the topic
is discussed (e.g., Maddala, 1983; Davidson and MacKinnon, 1993; Long, 1997; Powers and Xie,
2000; Fahrmeir and Tutz, 2001; Hardin and Hilbe, 2001). Empirical support for the recommen-
dations regarding both the similarities and differences between the probit and logit models can be
traced back to results obtained by Chambers and Cox (1967). They found that it was only possible
to discriminate between the two models when sample sizes were large and certain extreme patterns
were observed in the data. We discuss their work in greater detail below.

Since the time of Chambers and Cox, a great number of developments have occurred in the area
of binary response models. Increasingly, interest has turned to instances where there is more than
one binary response variable to consider. For example, Ashford and Sowden (1970) proposed a
multivariate probit model. More recently, the linear mixed models framework has been extended
to binary response data (Stiratelli et al., 1984). Despite these developments, the properties of link
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functions for binary response models in the multivariate realm remain largely unexplored. This is
unfortunate, as it turns out that the impact of link function on model fit is strongly affected by the
form of the model considered.

In the current paper we address this gap in the literature by examining model fit for two families
of multivariate binary response models. In Section 2.1, we review the bivariate probit model of
Ashford and Sowden (1970) and propose an approximate bivariate logistic model by exploiting
the relationship between the logistic distribution and thet distribution with degrees of freedom
ν = 8. As an alternative dependence structure a random effects model is presented by introducing a
common intercept term to the marginal link functions across the response variables. Factors that are
expected to influence the fit of these models are discussed in Section 2.2. The deviance information
criterion and Bayes factors are presented in Section 2.3 as the measures of fit that are used in our
study. Three research propositions are stated in Section 2.4 and the methods used in the study
are described in Section 3. Our findings and discussion of these are presented in Section 4 and 5,
respectively,

2. Link function and model fit

2.1. Multivariate binary response models
Many models for multivariate binary response data are possible (e.g., Fahrmeir and Tutz, 2001).
Here, we review two of the more widely used frameworks. The first involves specifying a joint
multivariate link function for the multiple binary responses. For example, the bivariate probit model
described in Ashford and Sowden (1970) can be written as

P (Yi,j = 1|xi,j) = Φ(ηi,j), j = 1, 2
P (Yi,1 = 1, Yi,2 = 1|xi,j) = Φ2(ηi,1, ηi,2, ρ) (1)

whereΦ2 is the bivariate standard normal cumulative distribution function, andi andj index re-
spondents and dependent variables respectively. This approach could be applied directly to obtain a
bivariate logistic model. However, the various extant multivariate logistic distributions have proper-
ties such as restrictions on possible values of correlation coefficients and asymmetric non-elliptical
distributions (Kotz et al., 2000, ch. 51) that make such a direct approach less practical. For exam-
ple, the Type II distribution of Gumbel (1961, Eq. 6.3) is among the more attractive of the bivariate
logistic distributions as it is not asymmetric. However, as Smith and Moffatt (1999, p. 318) recently
pointed out, the correlation is restricted such that|ρ| < 3/π2 ≈ .304. Clearly this is a consid-
erable limitation. Therefore, an attractive alternative is to capitalize on the logistic distribution’s
relationship to thet distribution.

Albert and Chib (1993) examined the choice of link function in binary response models from
the Bayesian perspective. They discussed the similarities between the logistic distribution and thet
distribution with degrees of freedomν = 8. In particular, their plot of the logistic quantiles against
the quantiles of thet(8) distribution shows an approximately linear relationship between the two
distributions. Albert and Chib (1993) determined that at(8) variable is approximately .634 times a
standard logistic variable. Examining further, it turns out that we can show there is almost a one-to-
one relationship between these two distributions with the appropriate parameterization. The logistic
pdf with location parameterc and scale parameterd is

P (x) =
exp[(x− c)/d]

d
{
1 + exp

[
(x− c)/d

]}2 .
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Fig. 1. Quantile values of Logistic(2/π) versus t(8) for probabilities from .001 to .999

Note that thet(8) distribution has variance4/3 and that the standard logistic distribution withc = 0
andd = 1 has varianceπ2/3. We may therefore equate the variances of the two distributions
by setting the logistic distribution’s scale parameter to2/π. With c = 0 the first three moments
of the two distributions are then identical, with standardized fourth moments being very close
(γ2 = µ4/µ2

2 = 4.2 in the case of the Logistic(2/π) andγ2 = 4.5 for the t). Thus, we can see
the t(8) has approximately the same distribution as the Logistic(2/π) but is just marginally more
leptokurtic. To obtain a more concrete understanding of the similarities between the two distri-
butions, we may examine the linear relationship between the quantiles of the two distributions for
probabilities between .001 to .999, e.g., as in Albert and Chib (1993). Figure 1 displays a plot of this
relationship. We find the linear relationship between these quantiles is described by the equation
tq = 5.6616×10−17 + .9976× lq, wheretq is thet(8) quantile andlq is the quantile for the logistic
distribution with scale2/π. TheR2 between the two sets of quantiles is in excess of .9999. Hence,
thet(8) distribution provides a very satisfactory approximation to the logistic distribution. As such,
we propose the following approximate multivariate logistic model

P (Yi,j = 1|xi,j) = Ft(8)(ηi,j), j = 1, 2
P (Yi,1 = 1, Yi,2 = 1|xi,j) = Ft(8)(ηi,1, ηi,2, ρ) (2)

whereFt(8) is the t(8) cdf andFt(8) is the bivariatet(8) cdf. Note that Chen and Dey (1998)
developed a Bayesian multivariate logistic model using a scaled multivariatet proposal distribution
involving somewhat heavier tails (ν = 5). Given the excellent fit of thet(8), we expect that their
formulation would yield essentially equivalent results to the ones obtained here.

Another frequently used model for multivariate binary response data is the random effects
model. Here, we have

P (Yi,j |x) = g(ηj + bi), i = 1, . . . , n j = 1, . . . , J (3)
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in which the probability of observing the response on variablej in individual i is related both to the
linear predictorηj as well as an individual-specific random intercept,bi. The intercepts are specified
to arise from a common distribution. Thus, in the random effects model, dependence is introduced at
the respondent level by the presence of a shared intercept term across theJ dependent variables. We
can see therefore that the link functiong(·) does not need to be given a multivariate characterization.
This is especially convenient as multivariate link functions are more computationally expensive
to evaluate and sometimes, as in the case of the logistic distribution, are simply unavailable in
a sufficiently flexible form. As such, random effects approaches seem to be much more widely
used for multivariate binary response data. Zeger and Karim (1991) provided an early Bayesian
development of the model in the context of a Gibbs sampling approach.

2.2. Factors influencing fit
As mentioned above, Chambers and Cox (1967) established that under certain conditions it was
possible to distinguish the results from probit and logit models. In particular, they were able to dis-
tinguish between the link functions when sample sizes were large (e.g.,n ≥ 1000) and where there
were what can be termed extreme independent variable levels. An extreme independent variable
level involves the confluence of three events. First, an extreme independent variable level occurs at
the upper or lower extreme of an independent variable. For example, say the independent variablex
were to take on the values 1, 2, and 3.2. The extreme independent variable level would involve the
values atx = 3.2 (or x = 1). Second, a substantial proportion (e.g., 60%) of the totaln must be at
this level. Third, the probability of success at this level should itself be extreme (e.g., greater than
99%).

While the conditions under which univariate probit and logit models could be distinguished
were established by Chambers and Cox, the conditions under which the two link functions can be
distinguished in multivariate binary response models have not been examined. Here, we remedy
this gap using two major families of models: the multivariate link function models such as (1) and
(2), and the random effects models of (3). We consider the bivariate case here. As such, we utilize
the bivariate probit model, first considered from a Bayesian perspective by Chib and Greenberg
(1998), as well as the new formulation of the multivariate logit model proposed in (2). We also
consider the random effects model under the probit link as well as under the Logistic(2/π) link. We
explore the behavior of these models in the presence of extreme independent variable levels as well
as in the absence thereof. We also explore these models’ behavior in the context of both moderate
and high levels of dependent variable correlation. It may seem that, for a given level of dependent
variable correlation, numerous data sets will need to be randomly sampled and analyzed via a Monte
Carlo study to ensure the robustness of the findings. However, note that bivariate binary data can be
expressed as a contingency table with four cells:a, b, c andd. The measure of association for the
contingency table for any givenn can be calculated deterministically via Pearson’s phi, which is

ϕ =
ad− bc√

(a + b)(c + d)(a + c)(b + d)
. (4)

It is easy to show that for any fixed values ofn andϕ, at most one data set can be generated up
to a relabeling of the cells. A somewhat similar argument applies to the generation of a predictor
with extreme independent variable levels. A predictor with an extreme independent variable level as
described by Chambers and Cox (1967) has a fairly well-specified set of properties. Deviating from
these properties will likely lead to a predictor that does not have extreme independent variable levels.
Thus, we examine here data sets that either do or do not have the property of extreme independent
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variable levels as defined by Chambers and Cox. Moreover, we examine data sets with a particular
moderate or high level of dependent variable correlation. Details regarding these data sets appear in
Section 3.

2.3. Measures of fit
Traditional Bayesian model comparison is performed using Bayes factors (Kass and Raftery, 1995).
More recently, Spiegelhalter et al. (2002) introduced the Deviance Information Criterion (DIC)
which combines measures of both model fit and model complexity. Specifically,

DIC = D − pD

whereD is the posterior mean of the deviance andpD is a measure of model complexity which may
be termed the effective number of parameters. In fixed effects models,pD should approximately
equal the actual number of model parameters. In random effects models,pD will typically be less
than the actual number of model parameters. Nonetheless,pD gives an indication of how much
these terms are contributing to the model’s overall performance.pD itself is defined asD −D(θ),
whereD(θ) is the deviance evaluated at the posterior means of the parameters. Models with greater
values ofpD are penalized for their greater complexityceteris paribus, as smaller values of DIC are
preferred. Thus, DIC is similar in interpretation and in spirit to another information-theoretic model
comparison criterion, AIC (Akaike, 1973). Based on this similarity, Spiegelhalter et al. (2002)
cite work in Burnham and Anderson (1998) which suggests that models with a DIC which is 3–7
greater than a ‘better’ model deserve less consideration. We adopt this criterion here for assessing
model fit. It is perhaps natural to want to compare the more recently-developed DIC measure with
the traditional Bayes factor, although Spiegelhalter et al. (2002) caution against this since the two
methods have different purposes. Specifically, the Bayes factor summarizes how well the prior
has predicted the obtained data whereas DIC summarizes how well the posterior might predict
future data that had been generated by the same process as that which generated the obtained data.
Therefore another way of describing two approaches is that the Bayes factor has a prior predictive
emphasis while DIC has a posterior predictive emphasis. Nonetheless, there is some preliminary
evidence to suggest that the two approaches may provide substantively similar results, at least in
some circumstances. Berg et al. (2004) conducted a simulation study to compare the performance
of DIC against Bayes factors calculated by the marginal likelihood method of Chib (1995) as well
as by the harmonic mean method of Newton and Raftery (1994). Performance comparisons were
also made using empirical financial data drawn from the 1993–1998 Standard & Poors 100 market
index. In both studies, DIC and Chib’s method yielded similar results.

In summary, Bayes factors have long been used in the context of Bayesian inference. Subject
to certain caveats (e.g., Lavine and Schervish, 1999), they may be preferred in certain situations.
However, here it is of interest to examine model fit and model complexity simultaneously because
of the random effects models in (3). Additional insights are available by examining model com-
plexity viapD under different extreme independent variable levels and different levels of dependent
variable correlation, particularly for the random effects models. By contrast, Bayes factors do not
provide measures of model complexity. Furthermore, DIC is a measure of a model’s out-of-sample
predictive ability. Thus, DIC appears to be the more relevant criterion here. Nonetheless, as a point
of comparison, we calculate the log marginal likelihoods for the different models here. We use the
Laplace-Metropolis method of Lewis and Raftery (1997). The Laplace method is known to perform
well with regard to accuracy for marginal likelihood calculations even in the presence of small sam-
ple sizes. For example, in probit models with a sample size approximately half of what we consider
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here Chib (1995) compared the performance of his method with the Laplace method. He found
agreement between the two approaches up to the second decimal place.

2.4. Research propositions
We present here three research propositions derived in part from the theoretical development above.
Findings with respect to these propositions should help provide assistance in decisions regarding
the selection of the link function in multivariate binary response models.

Research Proposition 1. The presence of extreme independent variable levels will lead to in-
creasingly pronounced differences in fit across the two link functions.

We arrive at this proposition directly from the work of Chambers and Cox (1967). Specifically,
to the extent that there are differences in model fit, they will be exacerbated by the occurrence of
extreme independent variable levels.

Research Proposition 2. Increasingly positive correlation will lead to decreased differences in
fit across the two link functions.

In describing this proposition, we may begin by describing the following trivially obvious state-
ment: all else being equal, any differences in model fit will increase as the sample size increases. For
example, part of Chambers and Cox’s work involved finding at what sample size one may discern
differences in binary response model fit across the two link functions. In Research Proposition 2
the observation is as follows: as the correlation increases, what may be termed the effective sample
size decreases. Phrased differently, the amount of new information provided byy2 relative toy1

decreases with increasing correlation. In the limiting case whenρ = 1, the bivariate model could
be replaced by a univariate one asy2 provides no information that has not already been provided by
y1. Hence, differences in fit will be diminished at higher correlations.

Research Proposition 3. In random effects models, use of the probit link results in model fit that
is as good or better than model fit under the logit link.

This possibly surprising proposition does not directly stem from the work of Chambers and Cox
but instead can be obtained as follows. Recall that the logistic distribution is leptokurtic relative
to the normal distribution and so in fixed effects models having some overdispersion, we might
expect logit models to fit somewhat better. While in the current study the principal use for the ran-
dom effects terms is as a means for introducing dependence between the binary response variables,
note that random effects terms also can be used as a device to model overdispersion. Therefore,
in a random effects model where the random effects terms are adequately modeling any existing
overdispersion, the logit link should likely not fit better than the probit link. Clearly the random
effects terms will already be capturing the overdispersion, so the heavy tails of the logit will likely
not contribute to further improvements in fit. Instead, we would expect that the more compact nor-
mal distribution associated with the probit model to provide a more precise fit. It would of course
be possible to construct a random effects model in which the random effects terms did a poor job of
modeling overdispersion. For example, one could assign a highly informative prior to the random
effects terms such that the prior was very discrepant from the actual patterns in the data. However,
in a random effects model that is functioning well (i.e., fitting the overdispersion accurately), the
probit model should lead to improved fit.
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3. Methods

We previously described how extreme independent variable levels were those in which the ability
to discriminate between probit and logit links are maximized. We now describe their operational-
ization in the current study. Chambers and Cox (1967) investigated the case where there were three
levels for a single independent variable. To be more specific about what constitutes an extreme
independent variable level, they found that the three levels ofx should be 1, 2, and 3.2 respectively.
They also found that, depending on the baseline link (probit vs. logit), either 11.7% or 16.7% of
the total responses should be placed at Level 1 (x = 1). Due to the constraints of needing to have
an integer number of successes in the data as well as of working with considerably smaller sample
sizes, we approximate the average of these proportions by placing 13.3% of the observations at this
level when extreme independent variable levels are desired. They also found that the proportion
of successes at Level 1 should be either 21.5% or 17.1%. Here, our slightly crude approximation
of these proportions (resulting again from much smaller sample sizes) is that the number of suc-
cesses at Level 1 will be 16.7%. Note that, if anything, the crudeness of this approximation (and
any others we might consider) will make it more difficult for us to demonstrate differences between
the link functions since Chambers and Cox described the optimal points at which discriminability
was globally maximized. Level 2 should contain either 21.4% or 26.3% of the responses, with the
proportion of successes being either 78.5% or 82.9%. Here, we place 20.0% of the observations at
this level with 77.8% being successes. Finally, Level 3 should contain either 66.9% or 57.5% of the
responses, with the proportion of successes being either 99.64% or 99.87%. We place 66.7% of the
observations at this level with 96.7% being successes.

For the case of non-extreme independent variable levels, we create data in such a way that the
exact opposite of the three conditions above are obtained. First, we divide the data evenly among the
levels so that each level containsn/3 observations. Second, less extreme proportions of successes
are placed at each level. In particular, the proportion of successes are 60.0%, 80.0%, and 86.7% for
Levels 1, 2, and 3 respectively. Then the third condition is also satisfied: given that all of the levels
have equal sample sizes and more modest proportions of successes, then the necessary conditions
do not exist at the extreme levels of the independent variable since they do not exist at any of its
levels. We take the three levels ofx to be 1, 2, and 3. In a departure from the recommendations of
Chambers and Cox, we consider smaller sample sizes ofn = 90 andn = 450. This is because in
many occasions sample sizes used in binary response models have more modest sample sizes than
the one considered by Chambers and Cox. Data sets havingn = 450 were generated by stacking 5
copies of the respectiven = 90 data set.

We also consider two levels of dependent variable correlation: moderate and high. In the ex-
treme independent variable level conditions, the correlationϕ will be set at .544 as a moderate
amount of correlation, and .848 for a high amount. In the conditions where independent variable
levels are not extreme,ϕ will be set at .519 as a moderate amount of correlation, and .819 for a high
amount. The values ofϕ vary slightly across the extreme/non-extreme conditions here because of
the limitations of having to specify an integer number of cases at each level for a smaller sample
size. Nonetheless, the across-condition correlations are quite close to one another; the differences
are all less than 0.03. Given these factors of interest, the Monte Carlo study design had a 2 (extreme
or non-extreme independent variable level)× 2 (small or largen) × 2 (moderate or high depen-
dent variable correlation level)× 2 (model type: multivariate link versus random effects model)×
2 (logit or probit link) factorial structure. The first three of these factors involve differences that
may be encountered in data whereas the latter two factors involve model choice which is under the
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control of the statistician.

We estimate the models in (1) and (2) as well as logit and probit versions of (3). To further
facilitate comparability, the logit version of (3) utilizes the Logistic(2/π) distribution as opposed to
the standard Logistic(1). This is easily accomplished by using the data augmentation approach of
Albert and Chib (1993). The probit version of (3) is also estimated using data augmentation. We
complete the specification of the multivariate link function models (1) and (2) as follows

Yi,j ∼ Bernoulli(pi,j)
pi,j = g(ηi,j)
ηi,j = β1,j + β2,j xi

β1,j ∼ N(0, 0.02)
β2,j ∼ N(0, 0.02)

ρj ∼ U(−1, 1),

whereg(·) is the link function. In the random effects models of (3), we complete the specification
as

Yi,j ∼ Bernoulli(pi,j)
pi,j = g(ηi,j)
ηi,j = β1,j + β2,j xi + bi

β1,j ∼ N(0, 0.02)
β2,j ∼ N(0, 0.02)

bi ∼ N(0, τ)
τ ∼ G(0.05, 0.05).

Under the high dependent variable correlation conditions, convergence of the random effects mod-
els is improved by adopting mildly informative priors. Accordingly, theβ parameters were given
normal priors with precisions of 0.02 (i.e., variances of 50) and prior means of zero. These pri-
ors are not particularly informative (especially given the modest values ofβ associated with binary
response models) and they gave considerable leeway for the parameters to move toward their poste-
riors. As mentioned previously, thebi parameters are assumed to arise from a common distribution.
The distribution used here for thebis is the normal with mean zero and precisionτ . The prior for
τ was also a mildly informative Gamma prior with prior shape and scale of 0.05. For consistency
purposes, theβs in models (1) and (2) were also given prior means and precisions of zero and 0.02.
The correlation parameter,ρ, in (1) and (2) was given a flat uniform prior over the interval[−1, 1].
Estimation was conducted using MCMC. For all models, 5,000 iterations of burn-in were discarded
and 150,000 samples from the posteriors were retained for use.

4. Results

From the preceding discussion, we examine four conditions in the current research. In Condition
1, the data has non-extreme independent variable levels with moderate dependent variable corre-
lation. In Condition 2, the data has non-extreme independent variable levels with high dependent
variable correlation. In Condition 3, the data has extreme independent variable levels with moder-
ate dependent variable correlation and the data has extreme independent variable levels with high
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Table 1. Model fit measures: small sample size

Multivariate Link Random Effects
NEI NEI EI EI NEI NEI EI EI
Mod High Mod High Mod High Mod High

DIC logit 180.8 146.5 103.4 83.5 145.5 60.7 100.9 45.8
probit 180.6 146.3 104.8 84.0 143.2 59.0 98.0 42.0

D logit 176.0 142.0 98.7 79.1 100.5 38.8 79.9 28.9
probit 175.9 141.9 100.0 79.6 98.4 37.8 74.7 26.7

pD logit 4.79 4.50 4.72 4.40 44.9 21.9 21.0 16.9
probit 4.76 4.47 4.77 4.42 44.8 21.1 23.2 15.2

NEI indicates non-extreme independent variable levels; EI indicates extreme independent variable levels;

Mod (moderate) and High refer to dependent variable correlation levels.

dependent variable correlation in Condition 4. Table 1 contains the results for the models under the
four conditions for the small sample size (n = 90).

We first examine the results for the multivariate link models. We see that fit as measured by
DIC under the non-extreme independent variable level conditions is comparable across links since
the differences in DIC across links are well below 3. The values of DIC as well asD may provide a
very modest indication that the probit models may be fitting trivially better, but the differences are
at best slight. As the dependent variable correlation moves from moderate to high, we see the value
of pD drop from around 4.8 to the vicinity of 4.5. This reflects the increasing parameter redundancy
under high dependent variable correlation. In the extreme independent variable level conditions, the
differences in fit become slightly more pronounced with the logit model fitting marginally better.
The heavier tails of the logistic distribution seem to provide a minimally better fit under moderate
or high levels of correlation in the presence of extreme independent variable levels. The values of
pD suggest that the probit model is less susceptible to increased parameter redundancy under high
correlation and extreme independent variable level in small sample sizes.

For the random effects models, the DIC results are only clearly delineated in the high correlation
extreme independent variable level condition. There we see that the DIC difference is 3.8 with the
probit model having a DIC of 42.0 versus a DIC of 45.8 for the logit model. Nonetheless, under
the other conditions the probit looks to be the more competitive, although the differences are rather
small due to the small sample size. We also see that the effective number of parameters as measured
by pD is considerably smaller than the true number of parameters, 95; this is not uncommon in
random effects models due to parameter redundancy (see Spiegelhalter et al., 2002). The values of
pD across link function tend to be relatively similar within condition. When the dependent variable
correlation becomes high or when extreme independent variable levels are present, the values ofpD

fall markedly.

Table 2 displays the results for the models when the sample size is larger (n = 450). Consistent
with expectations, we find here that differences between the two link functions become increasingly
distinct. For example, in the multivariate link models the logit model becomes noticeably more
preferred by DIC in the extreme independent variable level conditions. Under moderate depen-
dent variable correlation the difference in DIC in favor of logit is 7.9; under high correlation the
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Table 2. Model fit measures: large sample size

Multivariate Link Random Effects
NEI NEI EI EI NEI NEI EI EI
Mod High Mod High Mod High Mod High

DIC logit 864.4 690.0 477.5 373.8 720.0 303.2 475.1 205.5
probit 863.8 689.8 485.4 377.8 710.7 292.8 465.2 195.9

D logit 859.4 685.2 472.6 369.0 514.6 194.2 406.0 132.9
probit 858.8 685.1 480.5 373.1 503.1 188.4 383.2 127.4

pD logit 4.97 4.85 4.97 4.74 205.3 109.0 69.1 72.6
probit 4.93 4.79 4.93 4.74 207.6 104.4 82.2 68.5

Table 3. Log marginal likelihoods

Multivariate Link Random Effects
NEI NEI EI EI NEI NEI EI EI
Mod High Mod High Mod High Mod High

Small logit -102.0 -85.8 -60.6 -51.0 -98.4 -76.1 -62.3 -46.3
sample size probit -102.5 -86.3 -62.8 -52.8 -99.2 -76.7 -62.5 -46.1

Large logit -448.0 -362.5 -251.8 -201.6 -443.8 -351.4 -262.3 -199.9
sample size probit -448.1 -363.0 -257.0 -204.7 -444.6 -352.2 -261.8 -200.4

difference is 4.0. We might expect though that with further increases in sample size the relative
superiority of the logit’s fit would continue to grow. In the random effects models, the probit link
provides a considerably better fit with all of the differences in DIC favoring probit by 9.3 or more.
There is a notable amount of consistency in the DIC differences favoring probit: the differences all
lie within a relatively narrow band from 9.3 to 10.4 despite the variation in the data across the four
conditions. The values ofpD are relatively similar in the non-extreme independent variable level
conditions. They become more dissimilar in the moderate correlation extreme independent variable
level condition. Here, the heavier tails of the logistic distribution seems to allow the model to be
estimated with a smaller amount of effective parameters. By contrast, the more compact normal
distribution generates a greater number of distinct effective parameters. This offsets the relatively
large reduction in deviance (difference inD = 22.8) that the probit provides over the logit. In the
final condition, the probit’s advantage is reduced by the high correlation and so the models’pD

values are again more similar.

Table 3 contains the log marginal likelihoods for the models under consideration. We first
examine the multivariate link models. In the small sample size condition, there is little to distinguish
the logit and probit links in the two non-extreme independent variable level conditions. In the
extreme independent variable level conditions, the Bayes factors somewhat tend toward the logit
link over the probit with values of 8.57/1 in the moderate correlation condition and 6.10/1 in the high
correlation condition. In the large sample size condition, this pattern is repeated with the extreme
independent variable level condition Bayes factors in support of the logit link being considerably
larger (172.7/1 and 23.8/1 for the moderate and large correlation conditions respectively). Thus,
we see that DIC and the Bayes factors are in agreement with respect to these fixed effects models:
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the logit is preferred in the case of extreme independent variable levels. With the random effects
models, however, DIC and Bayes factors provide different pictures. As described earlier, the values
of both DIC and alsoD in Tables 1 and 2 are substantially smaller for the probit models, indicating
that from a minimum-deviance perspective probit models perform noticeably better. However, the
log marginal likelihoods for the random effects models in Table 3 are approximately equal across
links, indicating little support for one link function over the other.

5. Discussion

Tables 1 and 2 illustrate that the conventional wisdom about the relative similarity of the logit and
probit link functions in binary response models does not carry over to the multivariate realm. In fact,
differences in fit can be found even in small sample sizes. With regard to the research propositions,
considerable support for Proposition 1 was found in the results for the multivariate link models. In
the small sample size condition (Table 1), the differences in DIC for these models in the non-extreme
independent variable level conditions were relatively small (0.2 or less for multivariate link and 2.2
or less in the random effects models), while in the extreme independent variable level conditions
they increased. In Table 2 Proposition 1 was again supported in the multivariate link models, and
it is in this context that the differences were most pronounced. However, Table 2 also shows that
support was not quite obtained in the context of large sample random effects models under high
correlation. It might be expected that Proposition 1 would be largely supported based on the work
of Chambers and Cox (1967). However, to the best of our knowledge it has never been verified
in the case of random effects models. The point deserved examination for two reasons. First,
models with random effects terms are qualitatively different from the purely fixed effects models
that were considered by Chambers and Cox (e.g., in non-MCMC approaches, an integration of the
random effects is involved in the formulation of these models). Second, the proposition did not
appear to hold up as well in the case of random effects models with larger sample sizes. Evidence
supporting Proposition 2 was primarily found in the multivariate link model conditions with extreme
independent variable levels. For example, in Table 2 we find the difference in DIC across links
declined from 7.9 in the moderate correlation extreme independent variable level condition to 4.0 in
the high correlation extreme independent variable level condition. In the non-extreme independent
variable level conditions, a similar pattern is visible but the magnitudes are far smaller. When the
sample size was small, the evidence declined. By contrast, the results Proposition 2 were equivocal
for random effects models. Finally, from a deviance perspective evidence for Proposition 3 was
also obtained and in terms of statistical practice these findings arguably have the most important
implications. Simply stated, the probit link appears to offer a consistent advantage over the logit
link in random effects models from the perspective of minimizing deviance and enhancing model
fit. For the small sample size results of Table 1, the evidence was not of sufficient magnitude
to constitute a notable difference (except in the case of the high correlation extreme independent
variable level condition) but the probit link was consistently favored. For the larger sample size of
Table 2, the differences in DIC all exceeded 9, well over the threshold adopted here.

In summary, judicious selection of the link function seems likely to help improve model fit in
multivariate binary response models according to a deviance-based perspective. Model fit in random
effects models seem to be improved generally by selecting the probit link. By contrast, the logit link
seems preferable for multivariate link models when there are extreme independent variable levels.
However, we note that when a perspective based on Bayes factors is adopted, the interpretation of
the findings becomes somewhat less clear cut. For the fixed effects multivariate link models, the
findings were consistent across the DIC and Bayes factor measures. For example, the logit link is
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selected by both approaches in the context of multivariate link models with extreme independent
variable levels. However, in the random effects models there were little differences to be found
between the link functions according to the Bayes factors. Given their prior-predictive nature, this
indicates that in the random effects models the prior predicted the data equally well across the two
link functions. So, from a prior predictive viewpoint, there is little to differentiate the models.
However, if we are interested in both in-sample predictive ability (as measured by the deviance) and
out-of-sample predictive ability (as measured by DIC), then in the random effects models the probit
is clearly preferable.

It is not uncommon to find disagreements between the Bayes factors and deviance based mea-
sures such as DIC. It was noted by Kass and Raftery (1995) that Bayesian Information Criterion
(BIC), another deviance based measure, does not approximate Bayes factors well in cases where the
number of parameters is large relative to the sample size. Similar findings were reported by Carlin
et al. (1992) where authors used random effects logistic models. Furthermore, evaluation of Bayes
factors in random effects models under the probit and logit links poses computational challenges
and therefore the disagreements may be attributed to the accuracy of these results, although as dis-
cussed previously the Laplace method has attractive performance properties. We consider this as a
future research topic.

One might speculate as to whether the results presented here would replicate to other situations.
There appear to be relatively few instances of published analyses involving link function comparison
and the use of DIC in the context of multivariate binary response models. However, some such
research has appeared. In particular, Spiegelhalter et al. (2002,§8.3) also happened to provide an
example in which results for random effects models under the probit and logit link were contrasted
(as were the results under the cloglog). The data set was that of a real world study of the effects
of air pollution. Interestingly, the probit link was again preferred, in both the canonical and mean
parameterizations (DICs 1411.3 and 1307.3 respectively), over the logit (DICs 1415.1 and 1335.3
respectively).
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