Reality vs. Simplicity: The Effects of Real-World Objects on Attentional Selection

Paul Scotti1, George L. Malcolm2, Mary A. Peterson3, and Sarah Shomstein1
George Washington University1, University of East Anglia2, University of Arizona3

Introduction

- To date, most object-based attention research has been conducted with simple geometric shapes, showing that objects guide attentional selection1,2.
- Simple rectangles are weak representations for the objects we encounter on a daily basis, possibly putting less pressure onto the attentional system as compared to real-world objects3,4.

Question

- Do objects with more complex features which contain high-level (semantic) information constrain attentional allocation?

Methods & Results

Experiment 1
Canonical Orientation: Same
- Complex real-world objects are grouped, reducing object contribution to attentional allocation4.

Experiment 2
Non-canonical Orientation: Same
- Real-world objects are grouped regardless of canonical orientation

Experiment 3
Canonical Orientation: Different
- Different images are not grouped, leading the attentional system to rely on objects3.

Experiment 4
Meaningful Relatedness
- High-level semantic relationships modulate object contribution to attention allocation

Summary

<table>
<thead>
<tr>
<th>Exp 1, Canonical Orientation, Same Objects:</th>
<th>Exp 2, Non-canonical Orientation, Same Objects:</th>
<th>Exp 3 & 4, Canonical Orientation, Different Objects:</th>
<th>Exp 4, Meaningfully Related vs. Unrelated:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space-Based Effects</td>
<td>No Object-Based Effects</td>
<td>Space-Based Effects</td>
<td>Object-Based Effects</td>
</tr>
<tr>
<td>Space-Based Effects</td>
<td>No Object-Based Effects</td>
<td>Space-Based Effects</td>
<td>Object-Based Effects for Unrelated Pairs</td>
</tr>
</tbody>
</table>

Discussion

- When using complex real-world objects, perceptual grouping4 can reduce reliance on object contribution to attentional allocation.
- Grouping is not restricted to perceptual similarity, and is extended to semantic relatedness; demonstrating that high-level information (semantics) constrains attentional allocation.
- When objects are perceptually and semantically dissimilar, the attentional system relies on object-based selection.

References: