

Introduction

- Reward, goals, and motivation affect attentional selection.^{1, 2, 3, 4, 5}
- The mechanism of selection is flexible, accurate, and efficient at incorporating these various influences for the purpose of attentional guidance.

Visuo-spatial Neglect

- Neglect is a neurological disorder, characterized by a deficit of attention to the left side, most often accompanied by damage to the right parietal lobe.
- Current treatments are neither effective nor long-lasting.
- Patients are sensitive to implicit target contingencies in search.⁶
- What we don't know is whether neglect precludes sensitivity to reward based attentional guidance.

Purpose

1) Does reward guide attention in patients with neglect?

2) Is the effect of reward long-lasting?

Task

Bottom-up

- Find pop-out color.
- Target location: 33% at each.
- Reward: 85% high (+10) to highly rewarded color or location.
- Response: top or bottom notch.

<u>Top-down</u>

- Find shape as determined by color = circle, blue = triangle).
- Target location: 33% at each.
- Reward: 85% high (+10) to highly rewarded shape or location.
- Response: top or bottom notch.

Participants

- 86 Controls
- Patient C.P. with severe neglect

Reward-based Influences on Attentional Orienting in Patients with Visuo-spatial Neglect Leslie Drummond & Sarah Shomstein **George Washington University**

Effect of Reward							
	Bottom-up		Top-down				
	Color	Left	Shape	Left			
Feature	\checkmark	Х	Х	\checkmark			
_ocation		\checkmark		Х			

Faster RT for bottom-up highly rewarded color and left side.

Faster RT for top-down left side when color was the focus of reward.

Long-lasting Effects							
	Bottom-up		Top-down				
	Color	Left	Shape	Left			
Feature	Х	\checkmark	Х	\checkmark			
_ocation		\checkmark		\checkmark			

Faster RT for left side when color was rewarded and for highly rewarded left side in both bottom- up and top-down.

Conclusions

Summary

During reward training:

 C.P. is sensitive to reward manipulation in top-down and bottom-up orienting for both locations and features.

After training (i.e., reward structure removed):

- Neither color nor shape, in either top-down or bottom-up orienting, receive a long-lasting benefit of reward.
- However, there are carry-over effects for both the left side in the highly rewarded feature condition and for the highly rewarded location condition in both top-down and bottom up orienting.

These findings demonstrate that patients with neglect:

- Are sensitive to reward structure,
- Improve their attentional orienting to the left side with reward training, thus reducing neglect (at least in the short-term),
- Might benefit from a reward-based rehabilitation tool.

References

¹Engelmann, J., & Pessoa, L. (2007). Motivation Sharpens Exogenous Spatial Attention. Emotion, 7, 668-674.

²Kiss, Driver, & Eimer (2009). Reward priority of visual target singletons modulates ERP signatures of attentional selection Psychological Science, 20, 245-251.

³Kristjansson, Sigurjonsdottir, & Driver, J. (2010). Fortune and reversals of fortune in visual search: Reward contingencies for pop-out targets affect search efficiency and target repetition effects. Attention, Perception, & Psychophysics, 72, 1229-1236.

⁴Maunsell, J. (2004). Neuronal representations of cognitive state: reward or attention? Trends in Cognitive Sciences, 8, 261-

⁵Snow, J., & Mattingley, J. (2006). Stimulus- and goal-driven biases of selective attention following unilateral brain damage: Implications for rehabilitation of spatial neglect and extinction. Restorative Neurology and Neuroscience, 24, 233–245.

⁶Geng, J., & Behrmann, M. (2002). Probability cueing of target location facilitates visual search implicitly in normal participants and patients with hemispatial neglect. Psychological Science, 13(6), 520-525.