

The Geometry of Fox's Free Calculus with Applications to Higher Dimensional Knots

Work in Progress

Samuel Lomonaco

University of Maryland Baltimore County (UMBC)
Email: Lomonaco@UMBC.edu
WebPage: www.csee.umbc.edu/~lomonaco

Talk given in PU Math Algebraic Ton seminar Apres
Updated May 8, 2013

Road Map for Talk

- 3-D Knot Theory
- Knot Diagrams, Reidemeister Moves, π_{1}, Wirtinger
- Geometry of Group Presentations
- Wirtinger Generalized Presentations
- Geometry of Fox Free Calc
- 4-D Knot Theory
- History + Asphericity Analogs
- Cross Sections \& Midsections
- Yoshikawa Moves and Swenton Completeness
- Generalized Presentations of 2-Knots ???
- Conclusion

Equivalent Definition

Def. $K_{1} \sim K_{2}$ provided there exists a continuous family of auto-homeomorphisms

$$
h_{t}: S^{3} \rightarrow S^{3} \quad(0 \leq t \leq 1)
$$

i.e., an isotopy, that continuously deforms K_{1} into K_{2}.

Various Placement Problems

- 3-D Knot Theory

$$
k: S^{1} \rightarrow S^{3} \quad 1-\operatorname{Knot}\left(S^{3}, k S^{1}\right)
$$

- 4-D Knot Theory

$$
k: S^{2} \rightarrow S^{4} \quad \text { 2-Knot }\left(S^{4}, k S^{2}\right)
$$

- 5-D Knot Theory
$k: S^{3} \rightarrow S^{5} \quad 3-\operatorname{Knot}\left(S^{5}, k S^{3}\right)$

When do two Knot diagrams represent the same or different knots?

Theorem (Reidemeister). Two knot

 diagrams represent the same knot iff one can be transformed into the other by a finite sequence of Reidemester moves.The Fundamental Group $\pi_{1}(X)$
Knot Exterior $X=S^{3}$-SmallOpenTubularNbd $\left(k S^{1}\right)$

- Fundamental Group $\pi_{1}(X)=$ Knot Invariant
- Asphericity of Knots (Papakyriakopoulos)
$\Rightarrow X=K\left(\pi_{1} X, 1\right) . \quad \therefore \pi_{n} X=0$ for $n>1$

Group Presentations

Question: When do two presentations represent the same group?

What is a knot invariant ?

Def. A knot invariant I is a map
$I:$ Knots \rightarrow Mathematical Domain
that takes each knot K to a mathematical object $I(K)$ such that

$$
\mathrm{K}_{1} \sim \mathrm{~K}_{2} \Rightarrow I\left(\mathrm{~K}_{1}\right)=I\left(\mathrm{~K}_{2}\right)
$$

Consequently,

$$
I\left(\mathrm{~K}_{1}\right) \neq I\left(\mathrm{~K}_{2}\right) \Rightarrow \mathrm{K}_{1} \not \subset \mathrm{~K}_{2}
$$

Tietze Transformations: $\boldsymbol{T}_{1}^{\mathrm{tI}}, \boldsymbol{T}_{2}^{\mathrm{t1}}$
Tietze 1: $\quad(\underline{\underline{x}}: \underline{\underline{r}})^{T_{1}}(\underline{\underline{x}} \cup y: \underline{\underline{r}} \cup s)$, where

- y is a new symbol, and
- $s=y \xi^{-1}$, with $\xi \in F(\underline{\underline{x}})$

Tietze 2: $\quad(\underline{\underline{x}}: \underline{\underline{r}}) \xrightarrow{T_{2}}(\underline{\underline{x}}: \underline{\underline{r}} \cup s) \quad$, where

- $s \in \operatorname{Cons}(\underline{\underline{r}})$, i.e., $s=\prod_{\alpha=1}^{m} r_{i(\alpha)}^{w_{\alpha}}$, with
- $w_{\alpha} \in F(\underline{\underline{x}}), 0 \leq \alpha \leq m$, and
- $\boldsymbol{r}_{j(\alpha)}^{w_{\alpha}}=\boldsymbol{w}_{\alpha} \cdot \boldsymbol{r}_{j(\alpha)} \cdot \boldsymbol{w}_{\alpha}^{-1}$

Group Presentations

Question: When do two presentations represent the same group?

Theorem (Tietze): Two group presentations represent the same group iff there exists a finite sequence of Tietze transformations which transforms one into the other.

The Geometry of Group Presentations

Def. An abstract Group presentation consists of two sets

- $\underline{\underline{x}}$, the set of generators,
- $\stackrel{r}{=}$, the set of relators,
together with an evaluation map

$$
\wedge: \underline{\underline{r}} \rightarrow F(\underline{\underline{x}})
$$

from the set of relators $\underset{\underline{r}}{r}$ into the free group $F(\underline{\underline{x}})$ on the set of symbols $\underline{\underline{x}}$.

The Geometry of Group Presentations

Example: $\left(a, b, c: r_{1}, r_{2}, r_{3}\right)$, where

$$
\left\{\begin{array}{l}
\hat{r}_{1}=c b c^{-1} a^{-1} \\
\hat{r}_{2}=a c a^{-1} b^{-1} \\
\hat{r}_{3}=b a b^{-1} c^{-1}
\end{array}\right.
$$

The Geometry of Group Presentations

Def. A CW-complex is said to be monopointed it it has only one 0 -cell.

Proposition. Up to renaming and reordering, there exists a one-to-one correspondence between the set of abstract group presentations and a set of monopointed 2-D CW-complexes.

$$
(\underline{\underline{x}}: \underline{\underline{r}}) \leftrightarrow K(\underline{\underline{x}}: \underline{\underline{r}})
$$

The Geometry of Group Presentations

The CW-complex $K(\underline{\underline{x}}: \underline{\underline{y}})$ is constructed with an initial 0 -cell, denoted by ∞, and then iteratively attaching cells as follows:

1-cells: For each generator $\boldsymbol{x}_{j} \in \underline{\underline{x}}$, adjoin an oriented 1-cell X_{j} by attaching both endpoints to the sole 0 -cell ∞

2-cells: For each relator $r_{k} \in \underline{\underline{r}}$, adjoin an oriented 2-cell R_{k} with attaching map \hat{r}_{k}.

Examples
Example: Torus $=(a, b: r), \hat{r}=a b \bar{a} \bar{b}$
Example: $\mathbb{R} P^{2}=(a, b: r), \hat{r}=a b a \bar{b}$
Example: $S^{1} \vee D^{2}=(a, b: r), \hat{r}=b$
Example: $S^{1} \vee S^{1} \vee S^{2}=(a, b: r), \hat{r}=1$
Example: $S^{2} \vee S^{2}=\left(\varnothing: r_{1}, r_{2}\right), \widehat{r_{1}}=1, \widehat{r_{2}}=1$

The Geometry of the Tietze Moves

- Tietze 1 attaches a 2-cell S and a free edge Y.

$$
T_{1}:(\underline{\underline{x}}: \underline{\underline{r}}) \mapsto(\underline{\underline{x}} \cup y: \underline{\underline{r}} \cup s), \hat{s}=y \xi^{-1}, \xi \in F(\underline{\underline{x}})
$$

Thus, T_{1} is a simple homotopy operation: and therefore preserves homotopy type.

- Tietze 2 attaches a 2-cell S.

$$
T_{2}:(\underline{\underline{x}}: \underline{\underline{r}}) \mapsto(\underline{\underline{x}}: \underline{\underline{r}} \cup s), \hat{s} \in \operatorname{Cons}(\underline{\underline{r}})
$$ Thus, T_{2} does NOT necessarily preserve homotopy type!

A Paradox?

Paradox: The Wirtinger presentation actually points to a 3-D CW decomposition of the exteror X. But it only represents a 2-D CW-subcomplex !

The usual "fix": The Wirtinger presentation has one too many generators. So toss out an unnecessary relator by applying a Tietze 2 move.

Fortunately, in this particular case, the Tietze 2 move preserves the homotopy type because there is a simpe homotopy type move on the 3-D complex collapsing the 3-D complex to the same resuting 2-D complex

The Geometry of the Wirtinger Presentation

Observation

The 3-cell in X corresponds to an identity I among the relators, namely:
$I \xrightarrow{\wedge} \hat{I}=r_{1} r_{2} r_{3} \xrightarrow{\wedge} c \bar{c} \bar{a} \cdot a c \bar{a} \bar{b} \cdot b a \bar{b} \bar{c}=1$

Where does this identity "live" ?

Groups with Operators

Def. Let H and G be groups. The group \bar{G} is said to be an H-group provided there exists a morphism $H \rightarrow \operatorname{Aut}(G)$ of H into the group $\operatorname{Aut}(G)$ of automorpisms of G.

Free $F(\underline{\underline{x}})$-groups

Def. Let $\underline{\underline{x}}$ and $\underline{\underline{t}}$ be two disjoint sets of symbols, and let $F(\underline{\underline{x}})$ and $F(\underline{\underline{x}} \cup \underline{\underline{t}})$ denote the corresponding free groups, respectively. The free $F(\underline{\underline{x}})$-group on the symbols t, written

$$
\mathfrak{F}_{F(\underline{\underline{x}})}(\underline{t})
$$

is the smallest normal subgroup of $F(\underline{\underline{x}} \cup \underline{\underline{t}})$ containing t.

It immediately follows that $\mathfrak{F}_{F(\underline{\underline{x}})}(\underline{\underline{t}})$ is invariant under the conjugation action of $F(\underline{\underline{x}})$.

Free $F(\underline{\underline{x}})$-groups

Thus, the elements of $\mathfrak{F}_{F(\underline{x})}(\underline{\underline{t}})$ are of the form:

$$
\prod_{\varepsilon} t_{\|=0}^{\prime \prime \prime}
$$

where
$\boldsymbol{t}_{j(\alpha)}^{w_{\alpha}}=w_{\alpha} \cdot \boldsymbol{t}_{j(\alpha)} \cdot w_{j(\alpha)}^{-1}$

Note. This conjugation action is a left action.

The Geometry of the Wirtinger Presentation

Wirtinger Generalized Presentation
$\boldsymbol{G} \longleftarrow \mathcal{v} \boldsymbol{F}(a, b, c) \stackrel{\wedge}{\longleftarrow} \mathfrak{F}_{F}\left(r_{1}, r_{2}, r_{3}\right) \stackrel{\wedge}{\longleftarrow} \mathfrak{F}_{F}(I)$

We denote the above non-abelian free resolution more cryptically as

$$
\left(a, b, c: r_{1}, r_{2}, r_{3}: I\right)
$$

and call it a generalized presentation.

> Wirtinger Generalized Presentation

$$
\left(a, b, c, d: r_{1}, r_{2}, r_{3}, r_{3}: I\right)
$$

$$
\begin{aligned}
& b c \bar{b} \bar{a} \longleftarrow^{\wedge} r_{1} \\
& c \bar{c} \bar{d}{ }^{\wedge} r_{2} \\
& d a \bar{c} \bar{a}{ }^{\wedge} r_{3} \\
& a d \bar{b} \bar{d}{ }^{\wedge} r^{a} r_{2}^{c} r_{4}^{c a} r_{3}^{c a} r_{4}
\end{aligned}
$$

Generalized Presentation Equivalence

The definition of generalized presentation equivalence is a straight forward exercise for the audience. So is the proof of the following theorem:

Theorem: Two generalized presentations are equivalent iff there is a finite sequence of generalized Tietze moves that transform one into the other.

Generalized Tietze Moves

There is only one generalized Tietze move for each order, namely:
n-th order generalized Tietze move T_{n} :
$T_{n}:\left(\cdots: \underline{\underline{r}}^{(n)}: \underline{r}^{(n+1)}: \cdots\right) \mapsto\left(\cdots: \underline{\underline{r}}^{(n)} \cup \sigma: \underline{\underline{r}}^{(n+1)} \cup \tau: \cdots\right)$
where $\hat{\tau}=\sigma \xi^{-1} \quad$ and $\quad \hat{\sigma}=\hat{\xi}$
and where $\quad \xi \in \mathfrak{F}_{F}\left(\underline{\underline{r}}^{(n)}\right)$

The Geometry of Generalized Presentations

 Proposition. Up to renaming and reordering, there exists a one-to-one correspondence between the set of finite generalized presentations and a set of monopointed CW-complexes.$\left(\underline{\underline{x}}: \underline{\underline{r}}: \underline{\underline{r^{(3)}}}: \underline{\underline{r^{(4)}}}: \cdots\right) \leftrightarrow \boldsymbol{K}\left(\underline{\underline{x}}: \underset{\underline{r}}{\underline{r^{(3)}}}: \underline{\underline{r^{(4)}}}: \cdots\right)$
The generalized tietze moves correspond to simple homotopy moves on the associated CWcomplexes.
Moreover, two generalized presentations define CW complexes of the same simple homotopy type iff there is a finite sequence of Tieze moves which transforms one into the other.

The Geometry of the Fox Free Calculus Let $\mathfrak{P}=\left(\underline{\underline{x}}: \underline{\underline{r}}^{(2)}: \underline{\underline{r}}^{(3)}: \cdots: \underline{\underline{r}}^{(n)}\right)$ be a generalized presentation, and let

$$
K=K(\mathfrak{P})
$$

be the corresponding CW-complex.
Let $G=\pi_{1}(K)$ the fundamental group of K.
Let $v: F(\underline{x}) \rightarrow G$ be the epimorphism
associated with $\left(\underline{\underline{x}}: \underline{\underline{r}}^{(2)}\right)$
Finally, let $\mathbb{Z} G$ be the group ring of G over the integers \mathbb{Z}

The Geometry of the Fox Free Calculus
Let \widetilde{K} be the universal cover of K, and let $\widetilde{\widetilde{K}}=\widetilde{K} \times$ Kerv be the non pathwise connected space above \widetilde{K}.

We now use the Fox free derivatives to construct a chain complex $C_{*}=C_{*}(\widetilde{\widetilde{K}})$

$$
\text { Hence, } H_{*}(\widetilde{K})=H_{*} C_{*}
$$

Moreover, $\boldsymbol{H}_{*}(\widetilde{K})=\boldsymbol{H}_{*}\left(\mathbb{Z} G \otimes_{\mathbb{Z} F} C_{*}\right)$

The Geometry of the Fox Free Calculus

The chain groups are defined as follows:

- The 0-th chain group $C_{0}=C_{0}(\infty)$ is defined as the free $\mathbb{Z} \bar{F}$-module generated by the 0 -cell ∞
- For $n>0$, the n-th chain group $C_{n}=C_{n}\left(\underline{\underline{R}}^{(n)}\right)$ is defined as the free $\mathbb{Z} F$-module generated by the set of n-cells $\underline{R}^{(n)}$.

For $n>0$.

$$
\begin{array}{|lll}
C_{n-1}\left(\underline{\underline{R}}^{(n-1)}\right) & \stackrel{\partial}{u} & C_{n}\left(\underline{\underline{R}}^{(n)}\right) \\
\sum_{k}\left(\frac{\partial \hat{r}_{j}^{(n)}}{\partial r_{k}^{(n-1)}}\right) \boldsymbol{R}_{k}^{(n-1)} & \leftarrow & \boldsymbol{R}_{k}^{(n)}
\end{array}
$$

If, for example, $u \in \underline{r}^{(3)}$ with $\hat{u}=r_{1}^{x_{1}} r_{2}^{x_{3}} r_{1} \bar{x}_{1} x_{3}$, then the boundary chain map of the corresponding 3cell U in \widetilde{K} is:

$$
\begin{aligned}
\partial U & =\left(\boldsymbol{x}_{1}-\hat{\boldsymbol{r}}_{1}^{x_{1}} \hat{r}_{2}^{x_{3}} \boldsymbol{x}_{1} \boldsymbol{x}_{3} \hat{\boldsymbol{r}}\right) \boldsymbol{R}_{1}+\hat{\boldsymbol{r}}_{1}^{x_{1}} \boldsymbol{x}_{3} \boldsymbol{R}_{2} \\
& =\left(\frac{\partial \hat{u}}{\partial r_{1}}\right)^{\wedge} \boldsymbol{R}_{1}+\left(\frac{\partial \hat{u}}{\partial r_{2}}\right)^{\wedge} \boldsymbol{R}_{2}
\end{aligned}
$$

For completeness, we give the standard algebraic definition of the Fox free $\partial / \partial x_{j}$

Algebraic Def. of Fox Free Derivative $\partial / \partial x_{i}$

Let G be a group, and let $\mathbb{Z} G$ denote the corresponding group ring over the ring of integers \mathbb{Z}.

Def. A derivative D in the group ring in the group ring $\mathbb{Z} G$ is defined as a map

$$
D: \mathbb{Z} G \rightarrow \mathbb{Z} G
$$

satisfying the following condition:

1) $D\left(\omega_{1}+\omega_{2}\right)=D \omega_{1}+D \omega_{2}$
2) $D\left(\omega_{1} \omega_{2}\right)=\left(D \omega_{1}\right) \omega_{2}^{o}+\omega_{1} D \omega_{2}$
where ${ }^{\circ}: \mathbb{Z} G \rightarrow \mathbb{Z} G$ is the trivializer
morphism which maps each element of G
to 1 of \mathbb{Z}

Algebraic Def. of Fox Free Derivative $\partial / \partial x_{i}$
Def. (Cont.) Let G be the free group $F(\underline{\underline{x}})$. Then to each free generator $x_{j} \in \underline{\underline{x}}$, there corresponds a unique derivative

$$
D_{j}=\partial / \partial x_{j}
$$

in $\mathbb{Z} F(\underline{\underline{x}})$, called the derivative with respect to x_{j}, which has the property

$$
\frac{\partial x_{i}}{\partial x_{j}}=\delta_{i j} \quad \text { (Kronecker delta) }
$$

Various Placement Problems

- 3-D Knot Theory
$k: S^{1} \rightarrow S^{3} \quad 1-\operatorname{Knot}\left(S^{3}, k S^{1}\right)$
4-D Knot Theory
$k: S^{2} \rightarrow S^{4} \quad$ 2-Knot $\left(S^{4}, k S^{2}\right)$
- 5-D Knot Theory
$k: S^{3} \rightarrow S^{5}$
3-Knot $\left(S^{5}, k S^{3}\right)$

4-D Analog of the Apspericity of Knots ?
For 1-knots, asphericity implies the exterior X is an Eilenberg-MacLane space, i.e.,

$$
X=K\left(\pi_{1} X, 1\right)
$$

Question. Want can be said about analog of Papa's ashphericity theorem for 2knots?

4-D Analog of the Apspericity of Knots ?
Def. A 2-knot $\left(S^{4}, k S^{2}\right)$ is said to be quasiaspherical (QA) if the third homology group of the universal cover of its exterior vanishes.
Theorem. (Lomonaco) If $\left(S^{4}, k S^{2}\right)$ is QA, then the homotopy type of its exterior X is determined by its algebraic 3-type, i.e., by the triple consisting of:

- $\pi_{1} X$
- $\pi_{2} X$ as a $\mathbb{Z} \pi_{1} X$-module
- The first k-invariant $k X$ lying in $H^{3}\left(\pi_{1} X ; \pi_{2} X\right)$

The Midsection Representation 2-Knots

Midsection Representation of a 2-sphere

The Geometry of Group Presentations
Theorem(Yoshikawa). The Reidemeister and Yoshikawa moves on the midsection representation of a 2-knot preserve knot type.

Theorem(Swenton/Keartin/Kurlin). Two 2knot midsections represent the same 2-knot iff there is a finite sequence of Reidemeister and Yoshikawa moves which transforms one into the other.

Talk Overview

This talk is a description of a research program which is best summarized by the following two questions:

Open Question 1

How does one piece together the Wirtinger generalized presentations of all the exterior cross sections of a 2-knot $\left(S^{4}, k S^{2}\right)$ into a generalized presentation of the exterior of the entire 2-knot ???

Open Question 2

Given a generalized presentation of the exterior X of a 2 -knot $\left(S^{4}, k S^{2}\right)$, how does one read off from this generalized presentation the second homotopy group Conclusion ??? $\pi_{2} X$ (as $\mathbb{Z} \pi_{1} X$-module), and the k invariant $k x \in H^{3}\left(\pi_{1} X ; \pi_{2} X\right)$???

Guest Editors
Kauffman \& Lomonaco

And also based on:

Fox, R.H., A quick trip through knot theory, in "Topology of 3-Manifolds and Related Topics," ed. by M.K. Fort, Jr., Prentice-Hall, Englewoods Cliffs, New Jersey, (1962), 120-167.
Kearton, C. \& V. Kurlin, All 2-dimensional links in 4-space live inside a universal polyhedron, Alg. Geom. Top, 8, (2008), 1223-1247.
Swenton, Frank J., On a calculus for 2-knots and surfaces in 4-space, JKTR, Vol. 10, No. 08, (2001), 1133-1141.

Yoshikawa, Katsuyuki, An enumeration of surfaces in four-space, Osaka J. Math. 31 (1994), 497-522.

This talk based on:
Lomonaco, Samuel J., Jr., Five dimensional knot theory, in "Low Dimensional Topology, AMS CONM/20,
Providence, Rhode Island, (1984), pp 249-270
Lomonaco, Samuel J., Jr., The homotopy groups of knots I. How to compute the algebraic 3-type, Pacific Journal of Mathematics, Vol. 95, No. 2 (1981), pp 349-390

Lomonaco, Samuel J., J., Homology of group systems with applications to low dimensional topology, Bulletin of the American Mathematics Society, Vol. 13, No. 3 (1980), pp 1049-1052.

Lomonaco, S. J., Jr., The second homotopy group of a spun knot, Topology, Vol. 8 (1969), pp 95-98

Some Other References

Lomonaco, Samuel J., Jr., Finitely ended knots are quasi-aspherical," in "Algebraic and Differential Topology- Global Differential Geometry," edited by George. M. Rassias, Teubner Publishers (Leipzig), Germany, (1984), 192 - 197.

Lomonaco, Samuel J., Jr., The third homotopy group of some higher dimensional knots, in "Knots, Groups, and 3-Manifolds, " (L.P. Neuwirth, ed.), Annals of Math Studies, 84, Princeton Univ. Press, (1975), 35-45.

Lomonaco, Samuel J., Jr., The fundamental ideal and Pi2 of higher dimensional knots, AMS Proc., 88, (1973), 431-433.
Andrews, J.J., and S.J. Lomonaco, Jr., The second homotopy group of spun 2-spheres in 4-space, Annals of Math., 90 (1969), pp 199-204. Lomonaco, S.J., Jr., The second homotopy group of a spun knot, Topology, Vol. 8 (1969), pp 95-98.
Roseman, Dennis, Reidemeister type moves for surfaces in four space, preprint
Roseman, Dennis, Projections of knots, Fund. Math. 89 , no. 2, (1975), pp. 99-110.

