A New Curriculum for

Physics Graduate Students at GW

Physics Graduate Advisor The George Washington University, DC, USA hgrie@gwu.edu

- Navigating a Minefield of Expectations
- 2 New GW "Two-by-Four" Graduate Curriculum
- Assessing Students: New Qualifying Exam Format
- Evaluation and Future: Best Intentions Where are the Hard Facts??

How to overcome 60 years of stagnation in teaching PhD students?

No answers; only what seems to work for GW.

1. Navigating a Minefield of Expectations		cf. Joint APS/AAPT Task Force 2006 "Which Way Forward?" Workshop 2008			
Great ideas	\iff	No time, money, resources			
US Physics is the best	\iff	US Physics has missed the boat			

1. Navigating a Minefield of Expectations

cf. Joint APS/AAPT Task Force 2006 "Which Way Forward?" Workshop 2008

Great ideas	\leftarrow
US Physics is the best	\leftarrow
Mold Future Professors	<
Formal Knowledge	\leftarrow
Gegenbauer polynomials, Fresnel's rhombus,	
renormalisation, What I Do Right Now, Fortran	

\Rightarrow	No time, money, resources
\Rightarrow	US Physics has missed the boat
⇒	Educate Glorified Engineers
⇒	Concepts & Skill-Sets
	abstraction, "real-world" problem solving, teamwork,

present/communicate, management, accounting

GW Grad Curriculum, AAPT Jacksonville Panel 15', 10.01.2011

1. Navigating a Minefield of Expectations

Great ideas	\iff
US Physics is the best	\iff
Mold Future Professors	\iff
Formal Knowledge	\iff
Gegenbauer polynomials, Fresnel's rhombus,	ab
renormalisation, What I Do Right Now, Fortran	
Rugged individualism	\iff
Sneer at PER	\iff
Traditional lectures	\iff
Adhere to Canon & Exams	\iff
Compulsory core	\iff

cf. Joint APS/AAPT Task Force 2006 "Which Way Forward?" Workshop 2008

\Rightarrow	No time, money, resources
\Rightarrow	US Physics has missed the boat
\Rightarrow	Educate Glorified Engineers
\Rightarrow	Concepts & Skill-Sets
	abstraction, "real-world" problem solving, teamwork,
	present/communicate, management, accounting
\Rightarrow	One-size-fits-all
\Rightarrow	Adore PER
\Rightarrow	Fashionable formats
\Rightarrow	Hip topics & free-for-all

Need-to-know learning

1. Navigating a Minefield of Expectations

Great ideas US Physics is the best	 ↔ No time, money, resource ↔ US Physics has missed the be 	
Mold Future Professors	⇐⇒ Educate Glorified Engine	ers
Formal Knowledge	↔ Concepts & Skill-S	ets
Gegenbauer polynomials, Fresnel's rhombus, renormalisation, What I Do Right Now, Fortran	abstraction, "real-world" problem solving, teamwork present/communicate, management, account	
Rugged individualism	↔ One-size-fits	-all
Sneer at PER	↔ Adore P	ER
Traditional lectures	←→ Fashionable form	ats
Adhere to Canon & Exams	Hip topics & free-for-	-all
Compulsory core my score	↔ Need-to-know learning	ng

What Made Us Think:

- Frequent student complaints (overwhelmed, no structure seen,...).
- Imbalance duration \iff material covered; temporal \iff logical ordering; initiation-rites.
- Some courses offered not/not regularly/only in combination with UGrad/by part-time lecturers.

Goal: Emphasise Shift: Formal Knowledge \implies Concepts & Skill-Sets

- Strong conviction: Physicists are All-Rounders. \implies Proficiency in all disciplines of Modern Physics.
- Better & faster prepare for and immerse into research.

June	Informal Pre-test Math Skills; support remedial self-study.								
Sem. 1	Theoretical Mechanics	(4)	Computational Physics I	(1)	Mathematical Methods (4) Colloquiu		Colloquium		
Sem. 2	Quantum Mechanics I	(4)	Computational Physics II	(1)	Electrodynamics & Classical Fields	(4)	Comm. Phys. & Colloquium		
Sem. 3	Quantum Mechanics II	(4)	Computational Physics III	(1)	Statistical Physics	(4)	Colloquium		
Sem. 4	Qualifying Exam Prep. Course	(3)			Astro I or Bio I or Nuclear&Particle I	(3)	Comm. Phys. & Colloquium	(3)	

May: Qualifying Exam; within 1 year: Proposal Exam; mentoring & annual progress reports

New Format:

- Increase from 150 min. to 200 min./week in core-course:
 More depth, cautious additions.
- Decrease number of parallel core-courses from 3 to 2: Less "parallel-processing", better focus.
- − Re-distribute teaching resources: Less courses ⇒ free resources for Advanced Astro/Bio/Nuclear

New Contents: Avoid "One-Book-Courses": loose script, lesson-by-lesson Refs. \implies time for discussion

- *Emphasise* synergies & logical ordering: e.g. 1st Sem.: Mechanics and Math. Meth. set foundation.
- Core-curriculum as bridge to research: Integrate recent developments, dept. research (EDyn, QM II, Stat.).
- Foster "research skills": Abstraction & reduction to essence, independence, team-work, communication.

Implementation Examples:

- Computational Physics Integrated with core: 6 weeks intro; then: projects from core courses (reports).
- **Electrodynamics** Jackson as rite-of-passage \implies natural stepping-stone: rel. fields, condensed matter.
- New Math. Methods; (re-)launch Astro/Bio/Nuclear; eliminate Graduate Lab (immerse in groups instead).

3. Assessing Students: New Qualifying Exam Format

- Old Format:

Four 3-hour sections, 2 per day: "test of stamina" instead of milestone on readiness for research.

No qualitative difference to course final exams; strong correlation with Finals grades.

 \implies Relatively large administrative effort, given predictable outcome.

Criterion: Basis of informed decision on potential for success in research *at graduate level*: Committment; problem-solving skills; physical intuition; transfer; grasp of synergies.

Students to perceive test as fair.

- New Format: 2 written parts, 4 hours each, 2 days, usually at end of Sem. 4.

Problems from any of the 4 core-subjects, plus problems which integrate different fields.

Preparation Course: emphasises integrated problems, review.

– PhD Proposal Exam ≤ 1 year after Qualifying: $\lesssim 20$ pages like grant proposal plus oral presentation.

Annual informal progress reports to committee, continuous mentoring.

4. Evaluation and Future: Best Intentions - Where are the Hard Facts??

Monitoring and Assessing Success

- Very difficult: PER on Graduate Education scarce; small-number game. Scattered information.

Need comprehensive review of contents/skills & agreed standards, quantifiable tests.
End the Era of Anecdotal Evidence!
\Longrightarrow Ideas?

Our Criteria: no bean counting

Time to PhD; reduced attrition; quicker placement in research groups, sooner productive.

Feedback from students, lecturers, PhD advisors, mentors.

Is being aware of issues already a measure of success?

Work In Progress: Continue with careful, diligent change.

- Clear, written rules and guidelines; student contract.
- Increase synergies, emphasis on concepts & meta-cognitive skills.
- Move towards more interactive settings, away from "one" book.
- Re-design advanced courses: Astro & Bio & Nuclear Physics I+II.

5. Old GW "Standard" Graduate Curriculum

Sem. 1	Theoretical Mechanics	(3)	Electromagnetic Theory I	(3)	Theoretical Methods	(3)	Comm. Phys. & Colloquium	
Sem. 2	Quantum Mechanics I	(3)	Electromagnetic Theory II	(3)	Computational Physics	(3)	Comm. Phys. & Colloquium	
Sem. 3	Quantum Mechanics II	(3)	Statistical Physics	(3)	Graduate Lab	(3)	Comm. Phys. & Colloquium	
Sem. 4	Qualifying Exam Preparation Course	(3)	Quantum Field Th. I or Nonlin. Systems I	(3)			Comm. Phys. & Colloquium	(3)

6. Parameters

Physics at GW:

- GW aspiration to close up to tier-1 private urban research universities.
- Physics: small department with concentrated, competitive research.
- 12 faculty in 3 fields (Nuclear, Bio, Astro) to cover Intro, Major, Grad lectures.
- ≈ 5 new grad. students p.a.; during courses, most in GTA positions; ≈ 30 total; $\gtrsim 70\%$ non-US.
- Very diverse background, skills.
- Median to PhD: 5-6 years; attrition: $\approx 30\%.$
- Mentoring system in place. "Department Family".

Positive Example: Good experiences with "German" curricula.