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lll. Descriptions

3. Lattice QCD

Or: Using Large Computers for Fun
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(a) Motivation of the Path Integral [Ryd 5; Sakurai: Mod. QM 2.5]
Historic Note

Thirty-one years ago, Dick Feynman told me about his ‘sum over
histories’ version of quantum mechanics. ‘The electron does any-
thing it likes’, he said. ‘It goes in any direction at any speed, forward
or backward in time, however it likes, and then you add up the
amplitudes and it gives you the wave-function.’ I said to him,
“You're crazy’. But he wasn’t.

[Ryd Chap. 5] F.J. Dyson*

PATH INTEGRALS

in Quantum Mechanics,
Statistics, Polymer Physics,
and Financial Markets

51h Edition]

Hagen KLEINERT

Kleinert/Duru solved the H atom using Feynman’s Path Integral formalism in 1979 (!).



(b) Path Integrals on a Computer

Sample action of very many paths: Approximate Path Integral by Monte Carlo!

(1) Euclidean Time (Analytic Continuation/Wick Rotation)

Phase factor 5 rapid oscillations, numerically bad. = use Euclidean Time

=4 /dzd* <a¢”)) V(t,?)]
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Euclideanise it — Tg — 2/d‘L'E d’r ( ( E)> +V(‘CE,7)] =: —Sg[P]

aTE
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1
— QM Partition Function e P with H = T+ V in 4 spatial dim. at temperature § = ﬁ(tf —1).
Disadvantages:
—Tg is not a time — just a parameter.

— No guarantee that analytic continuation to real time ¢ describes same QM system — but so far, all
explored cases do (proofs perturbative).

Advantages: Lattice QCD in 3 4 1 dimensions is Statistical Mechanics in 4 dim.: Same techniques!



(2) Discretisation

Simplest: 4-dim. lattice with spacing a, N points, length L = Na in each direction.
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Computer probes large but finite number if paths: Particle “hops” from point to point, calculate action,

weight with e SE, sum over many configurations:

Ag = (xgf, 76| X e_SE\xE7i,7,-> cf. Ising Model of Statistical Mechanics
paths



(3) Taking The Limits

Continuum Limita — 0

1

Thermodynamic/Infinite-Volume Limit L — oo (esp. At = Na=f3 = IEmperate

— 0Q)

Set dimension-ful scale — later...

In Practise

All of hadron comfortably inside box: L > 1/ (r?) & 1fm - today’s standard: L > 3fm.

~ (0.1fm.

Discretisation error: 0 <— a < typ. short-distance scale ~ 2GeV
e

Asymptotic Freedom of QCD helps: g \, 0 for large ¢
= asymptotically non-interacting theory “shields” a — 0 details.

Lattice QCD: perturbation hard = find intermediate match.

Today’s Lattices
L

N = — > 30 per dimension (d = 4), each has spin (4-dim. spinor), colour (3 x 3), > 3 flavours (uds).
a

(N = 64)* ~ 107 doable, 32* ~ 10 standard.

H uge matrix describes how particles hop from one point to next (usually sparse).



(d) Free Fields on the Lattice

Points — Fields: x(r) — ®(x*) For A Massive Real Scalar Field

Consider 1-Dimensional Case: only time direction, nothing else — generalisation straightforward.

ol de()\* 5.2
1S[CI>]—-|-§/dt ( . ) — 22 (1)
2
Euclideanise it — Tg —>%/drE (%) +m?®*(tg) | =: —Sg|D]
E

2

1 d
Rewrite as 2nd derivative = =5 /d‘L’E D(1g) {812 -I-mz] D(1E)
E

lattice sites n

—1
Discretise & la Runge-Kutta RK2 g Z [Cbn — (Ppy1 — 2P, + P, 1) +m2d>%]
a

2 2 1
) — . - 2 2 2 3
Convert to matrix on vector ® = : o dF ¢ “y R S P
q) (12 a2 a2
N . . . .

This is a Linear Chain of Coupled Harmonic Oscillators:

Dislocation @, at point n by spring with constant o« —

2 b
a
nearest-neighbour interactions, m provides additional “drag”.




Momentum Restriction: Brillouin Zone and Miniumum Momentum

a —1
Sel@l =% ) qn,,?(@nﬂ—chﬁ@n_l)jumzqﬁ}

lattice sites n

dk .
Solve by Discrete Fourier Transform ®, = /ﬁ e“" & (k) at momentum k. — HW
: - . . 1 a0 2 2 2
Result: Correct continuum limit for relativistic E-p relation: ——— — m” +k~+ O(a”).
propagator
,LI movie

Resolution a cannot resolve high momenta/high-frequency oscillations. Mm
— Useful momenta must be inside Brillouin Zone —— < k < —.

a a
black: k < Z;red: k> 2

In finite lattice volume, there is also a smallest nonzero momentum.

Example hypercube with Periodic Boundary Condition ®, = ®,, y:
27

kiin = & L 2kr;\,‘;":27'T !

2r 4w /4
— Momenta are discretised: k = 0, if’ if’ ceeyE—
a



http://home.gwu.edu/~hgrie/lectures/nupa-script+slides/linearchain-brillouin.gif

(e) QCD on the Lattice (pretend no matrices: simpler — results hold for matrices)

_ — 1
Locp =P iyt [8”—igAu]‘P—m‘P‘P—Etr[FﬂvF“V] XX

Discretisation: Quarks W on lattice sites, derivative connects adjacent sites. % x

1 .
Ay has direction, Ay GT UlA, + g du]U" = How to keep gauge invariance for a 7# 0?

Idea: gauge-covariant derivative D, := dy, —ig Ay == Ay, links adjacent lattice points in p-direction.

° x U X+aey
Link Variable U [x + ae, < x] = expig/dTAu()H— Tey) ——x

0

ey: unit vector
in (-direction



(e) QCD on the Lattice (pretend no matrices: simpler — results hold for matrices)

= . . — 1
Discretisation: Quarks W on lattice sites, derivative connects adjacent sites. % %
i
Ay has direction, Ay GT UlAy+ - 8“]UJr — How to keep gauge invariance for a # 0?
8

Idea: gauge-covariant derivative D, := 8“ —ig Ay == Ay links adjacent lattice points in Li-direction.

a
x U xtaey e, unit vector
= - — . “.
Link Variable U [x 4 ae < x] = explg/d’cAH (x+Tey) —— in Li-direction
0
Gauge Transformation W(x) — %W (x) = U(x) ¥(x): again: no matrices to simplify!

Ulx+aey + x| GT, expig/dr [Au(x+Tey) + dyou(x+ tey))
0

a
integral of derivative = explig &t(x+aey) + [ig/df Ap(x+ Teu)] —ig o(x)]
0



(e) QCD on the Lattice (pretend no matrices: simpler — results hold for matrices)

= . . — 1
Discretisation: Quarks W on lattice sites, derivative connects adjacent sites. % %
i
Ay has direction, Ay GT UlAy+ - 8“]UJr — How to keep gauge invariance for a # 0?
8

Idea: gauge-covariant derivative D, := 8“ —ig Ay == Ay links adjacent lattice points in Li-direction.

¥, x U X+aey ;
. . . ey : unit vector
Link Variable U [x 4 ae < x] = explg/dTAH (x+Tey) —— #1 -direction
0
Gauge Transformation W(x) — %W (x) = U(x) ¥(x): again: no matrices to simplify!
a
Ulx+aey + x| <A expig/dr [Au(x+Tey) + dyou(x+ tey))
0
a
integral of derivative = explig &t(x+aey) + [ig/df Ap(x+ Teu)] —ig o(x)]
0

a
split exponents = elé alrtacu) {exp ig/d’c Ap(x+ ”L'eu)} o8 a(x)
0



(e) QCD on the Lattice (pretend no matrices: simpler — results hold for matrices)

= . = 1
Discretisation: Quarks ¥ on lattice sites, derivative connects adjacent sites. % %
i
Ay has direction, Ay GT UlAy+ - 8”]UT — How to keep gauge invariance for a # 0?
8

Idea: gauge-covariant derivative D, := 8“ —ig Ay == Ay links adjacent lattice points in Li-direction.

¥, x U X+aey ;
. . _ . ey : unit vector
Link Variable U [x 4 ae < x] = explg/dTAH (x+Tey) ——x #1 -direction
0
Gauge Transformation W(x) — %W (x) = U(x) ¥(x): again: no matrices to simplify!
a
Ulx+aey + x| GT, expig/dr [Au(x+Tey) + dyou(x+ tey))
0
a
integral of derivative = explig &t(x+aey) + [ig/df Ap(x+ Teu)] —ig o(x)]
0
a
split exponents = lg Olxtaen) [expig/d’c Ap(x+ ”L'eu)} eis &)
0

use definitons = U(x+aey) Ulx +aey < x] U'(x)



(e) QCD on the Lattice (pretend no matrices: simpler — results hold for matrices)

_ — 1
Locp =Tir" [0y —igAy| ¥ —mPY — 3 w[Fy F*Y] X X
Discretisation: Quarks W on lattice sites, derivative connects adjacent sites. % x
1 .
Ay has direction, Ay GT UlA, + § du]U" = How to keep gauge invariance for a 7# 0?

Idea: gauge-covariant derivative D, := dy, —ig Ay == Ay, links adjacent lattice points in p-direction.

a
x U xtaey ey, unit vector
- - — . IJ'.
Link Variable U [x + ae, < x] = explg/dT Au(x+7tey) e——x in p1-direction
0
Gauge Transformation W(x) — %W (x) = U(x) ¥(x): again: no matrices to simplify!

Ulx+aey + x] &% _ U(x+aey) Ux+aey + x| U (x)

— W(x+aey) U[x+aey < x] W(x) is gauge-invariant (def. & property holds also for matrices)!



(e) QCD on the Lattice (pretend no matrices: simpler — results hold for matrices)

=, . = 1
Locp =Tir" [0y —igAy| ¥ —mPY — 3 w[Fy F*Y] X X
Discretisation: Quarks W on lattice sites, derivative connects adjacent sites. % x
1 .
Ay has direction, Ay GT UlA, + § du]U'" = How to keep gauge invariance for a # 0?

Idea: gauge-covariant derivative D, := dy, —ig Ay == Ay, links adjacent lattice points in p-direction.

a
x U xtaey ey, unit vector
- - — . IJ'.
Link Variable U [x + ae, < x] = explg/dT Au(x+7tey) e——x in p1-direction
0
Gauge Transformation W(x) — %W (x) = U(x) ¥(x): again: no matrices to simplify!

Ulx+aey + x] &% _ U(x+aey) Ux+aey + x| U (x)

= W(x+aey) Ulx+aey + x] P(x) is gauge-invariant (def. & property holds also for matrices)!

0= .
R W(x+aey) 1+1gaA“(x+ge“)+O(ga)2 Y(x)  midpoint approximation for integral



(e) QCD on the Lattice (pretend no matrices: simpler — results hold for matrices)

=, . = 1
Locp =Tir" [0y —igAy| ¥ —mPY — 3 w[Fy F*Y] X X
Discretisation: Quarks W on lattice sites, derivative connects adjacent sites. % x
1 .
Ay has direction, Ay GT UlA, + § du]U'" = How to keep gauge invariance for a # 0?

Idea: gauge-covariant derivative D, := dy, —ig Ay == Ay, links adjacent lattice points in p-direction.

a
x U xtaey ey, unit vector
- - — . IJ'.
Link Variable U [x + ae, < x] = explg/dT Au(x+7tey) e——x in p1-direction
0
Gauge Transformation W(x) — %W (x) = U(x) ¥(x): again: no matrices to simplify!

Ulx+aey + x] &% _ U(x+aey) Ux+aey + x| U (x)

= W(x+aey) Ulx+aey + x] P(x) is gauge-invariant (def. & property holds also for matrices)!
g

0= .
e W(x+aey) 1+1gaA“(x+ge“)+O(ga)2 Y(x)  midpoint approximation for integral

=¥ (x+aey)¥(x)+¥(x+aey)igaAy(x+ geu) Y(x) and gives correct a — 0 limit.

— ?8,1‘1’ — interaction by?nk between sites

= Use link variables I/ € SU(N): gauge invariance for all a # 0, no direct reference to A ;!



Gluon Action: Field Strength Tensor on the Lattice (again: non-matrix case)

Plaquette:

4 adjacent sites
with their links

(@) @)

K——X



Gluon Action: Field Strength Tensor on the Lattice (again: non-matrix case)

Plaquette: Compare two parallel links 1 lattice spacing apart in (xy)-plane:
4 adjacent sites 0 a .

. o a T z
with their links U| (O) — (0>] = expig/d’r Ay (0> a9 +igaAyx <(2)> + O(ga)z
(o) (@) 0

H————X<

v A

. .



Gluon Action: Field Strength Tensor on the Lattice (again: non-matrix case)

Plaquette: Compare two parallel links 1 lattice spacing apart in (xy)-plane:
4 adjacent sites 0 a ;
with their links M[(g) < (0>] = expig/dr Ay (;) 29 +igaA, (()) +O(ga)?
(2) Ul ()] ) 0
X 0 a a 0 , S
: : L{[( )(—( )] = L{T[( ><—< )] reverse integration direction
; : a a a a
Y A y T a
: : :expig/d‘L'Ax( ) Cig)l—lgaA ( >+O(ga)
. . a



Gluon Action: Field Strength Tensor on the Lattice (again: non-matrix case)

Plaquette: Compare two parallel links 1 lattice spacing apart in (xy)-plane:
4 adjacent sites 0 a ;
. . T g
with their links U] (g) — (0>] = expig/dr A, (0) 014 igaAy (8) +O(ga)?
0 a a
(@) Ul() @] @ 0
X 0 a e 0 , L
: : U| — | =UT"| — ] reverse integration direction
: : a a a a
v A

: : :expig/ad‘L'Ax (Z) a9 l-igaAy (i) +0(ga)*
—_——x
U< O

Combine: U| (2) — <Z>] Ul (g) — (8)] =1+ig a\[Ax ((%;) — A, (E) 1}+O(ga)2

-~

Looks like part of Field Strength Tensor Fy, = dyAy—0d\A, s Oy Ay (a?Z)



Gluon Action: Field Strength Tensor on the Lattice (again: non-matrix case)

Plaquette: Compare two parallel links 1 lattice spacing apart in (xy)-plane:

4 adjacent sites

with their links U| (g) — (8)] = expig/dr Ay (;) a9 +igaA, (g) + (’)(ga)2
() Ul @) @ 0

e

53 /S\ Ul (2) — (Z)] = UW(Z) — (2)] reverse integration direction

a
. T a
= .89 :exp—ig/drAx( ) Ci? l_igan(2> —|—O(ga)2
. = a a
0

Combine: U| (2) — (Z)] Ul (g) — (8)] =1+ig a\[Ax ((%;) — A, (E) 1}+O(ga)2

-~

Looks like part of Field Strength Tensor Fy, = dyAy—0d\A, a0 _, A, (aéi)
: a

Combine with the other 2 parallel links for gauge-invariant expression (holds also with matrices):

Plaquette Variable ~ Uo :=U| (g) — (2)] U| (2) — (Z)] Ul (Z) — (g)] Ul (g) — <8)]

= 1 +ig a® (dA, — dyA,) +O(ga)? like Field Strength Tensor
—_———
= Fy




QCD Action on the Lattice

In QCD, U[x +aey < x|, Un € SU(3), Fyy = dyAy — dyA, —ig [Ay,A,] contains self-interactions.

11
But same relation between F and U holds: Fry=:5 - U — 1]+ O(ga)o
1a- g
1
. 4 - . .
Gluon action /d X Eglue = —@ Ztr[blg]. Zum over all elementary plaquettes on lattice

— 0 for g — oo: strong-coupling limit is easy on lattice! (hard in perturbation: complementing)



QCD Action on the Lattice

In QCD, U[x +aey < x|, Un € SU(3), Fyy = dyAy — dyA, —ig [Ay,A,] contains self-interactions.

11
But same relation between F and U holds: Fry=:5 - U — 1]+ O(ga)o
1a- g
1
. 4 - . .
Gluon action /d X Eglue = —ng Ztr[blg]. Zum over all elementary plaquettes on lattice

— 0 for g — oo: strong-coupling limit is easy on lattice! (hard in perturbation: complementing)

_ir_'

i

—> Insert QCD action on lattice into Euclidean Path Integral: AL

Z:/ [DY] [D¥]  [DU] exp— Y LY, WU, U] [
~— S~ sites, links
all quarks on sites  all link

._
variables | |
as SU(3) L I I

matrices

.4 f_+

gluon quark
Ay replaced by matrices U € SU(3). Plaquette variables Un[U4] are functions of link variables /.

To solve, go to Monte Carlo & play dice for random links and sites on 4-dimensional hypercube:
Z is partition function of Statistical Mechanics in 4-dimensional space (no time).



(f) Static Quarks, Strong Coupling, Confinement Vison

Infinitely heavy quarks = action my,qq — o0 == quarks classical =—> quarks not in PI.

X X X X X X X X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X g9 X X X X <€ X X
Y
X X X X X X X X X X X X X X X X X X X X
N \ NT
X X X X X X Xq,X X X X X X X X X X X X X
_ 1., _ _ \\/4 N
X 99 X X X X g=> X X X ¢q X X 99—=>X X X >H> X
[
X X X X X X X X X X X X X X X X X X X X X X X X X

qq pair on site, drag g away = gauge inv. g(y)U (y < x)g(x), close loop C(7,1), annihilate ¢g.

Wilson Loop W[C(7,])] = I U (index i = 1,... labels links between sites of lattice)
links i along C

is extension of plaquette U to rectangle C(,1) with sides (7,/) in lattice units;

represents static ¢g pair at distance [ existing for (Euclidean) “time” 7.

Expectation value for energy of static ¢g pair (static loop C) (kin.energy 7" = 0) only from gluon action:

{212 L o T=0

(a(z. Dl laa(0,0) = [ T] dui[ I u,}e s | o (V) T=0 V(e
[l'links i links j

e allcr;n;jC



Calculate the Path Integral in the Strong Coupling Limit of U(1)

ate.0le ™ lag0.0) = [ T a4 T
aIIImks;

links j
along C

1
+7 Z tI‘Z/lD o
}e 27 plaquettes @ —(T+V)x = e V(i)

U(1) gauge group: each {; = ¢'% on link i is number on unit circle, with some angle ¢; € [0;27].
2

Integration over angles: /doc e"% — §, for n € Z nonzero only if no phase (average on circle is 0).
0

1 .
-V —H ; ; o
e VT o (gq(t,1)le)9g(0,1)) oc/ []do [ He“f} exp [2g Y cllatartanta)

all links only links j all links kImn of
i on lattice along C all lattice plaquettes
Strong Coupling Limit g — oco: expand exp of gluon action: x x x X X
. X X X
% [ Taa| T1e%] <0

_all links only links j X X T X

i on lattice along C
o X X X
since for lattice link i = link j of Wilson loop: /da,- e'%= = 0. X Il\ X

0 X X X X X



Calculate the Path Integral in the Strong Coupling Limit of U(1)
2

Integration over angles: /d(x e = §, 0 for n € Z nonzero only if no phase (average on circle is 0).
0

. 1 .
eV  (qg(7,1)]e"97(0,1)) oc/ Hda, [ Hel%} exp {22 Z el (Otouton+on)

all links only links j all links kImn of
i on lattice along C all lattice plaquettes

O / H dal |: H eiaj:| Z ei(ak+a/+al1l+an)

all links only links j all links klmn of
i on lattice along C all lattice plaquettes X X X X X
Match one link k of plaquette to link j in C: & = — o equal and opposite angles. X % X
= One integral # 0, but all others still 0. X % x X
O a0l ¥ T
X BRSO X
X % X
[
X X X X X



Calculate the Path Integral in the Strong Coupling Limit of U(1)
2

Integration over angles: /d(x e = §, 0 for n € Z nonzero only if no phase (average on circle is 0).
0

. 1 .
eV  (qg(7,1)]e"97(0,1)) oc/ Hda, [ Hel%} exp {22 Z el (Otouton+on)

all links only links j all links kImn of
i on lattice along C all lattice plaquettes

O / H dal |: H eiaj:| Z ei(ak+a/+al1l+an)

all links only links j all links klmn of
i on lattice along C all lattice plaquettes X X X X X
Match one link k of plaquette to link j in C: & = — o equal and opposite angles. X S X
. . n Y
= One integral # 0, but all others still 0. X D X
o ,L M T
X <X X
X % X
[



Calculate the Path Integral in the Strong Coupling Limit of U(1)
2

Integration over angles: /d(x e"% = §, for n € Z nonzero only if no phase (average on circle is 0).
0

e "% o (qq(t,1)le ™|qq(0,1)) o / Hdat{ Hei“’} exp {% Y, elatartonta)

all links only links j all links kImn of
i on lattice along C all lattice plaquettes

—2) %‘,2/ H doc,-[ H eiaj} Z ei(ak+a/+ocm+ocn)

all links only links j all links klmn of
i on lattice along C all lattice plaquettes X oxoxoXxoX
Match one link k of plaquette to link j in C: & = — o equal and opposite angles. X P T T X
. . N YA Y
= One integral # 0, but all others still 0. XX X

— Must match all links j along C and all links klmn of plaquettes to get 7~ 0! X . L X X

—> Need at least T x [ terms! == First nonzero integral: X e X

1 Tl / H 1 7l i 5
O(ng) ce V0% o (gg(7,1) e ]4q(0, 1)) o <2_g2> _ o-h2¢?) T

x
x
x
x
x



Calculate the Path Integral in the Strong Coupling Limit of U(1)
2

Integration over angles: /d(x e — 0,0 for n € 7Z nonzero only if no phase (average on circle is 0).
0

e "% o (qq(t,1)le ™|qq(0,1)) o / Hdat{ Hei“’} exp {% Y, elatartonta)

all links only links j all links kImn of
i on lattice along C all lattice plaquettes

—2) %"2/ H da,-[ H eiaj} Z ei(ak+a1+ocm+ocn)

all links only links j all links klmn of

i on lattice along C all lattice plaquettes X oxoxoXxoX
Match one link k of plaquette to link j in C: & = — o equal and opposite angles. X P T T X
= One integral # 0, but all others still 0. X ?f; :(A<Y X

— Must match all links j along C and all links klmn of plaquettes to get 7~ 0! X . L X X

—> Need at least T x [ terms! == First nonzero integral: X s o X

1 i / 1 Tl 5
o (ng) : e V0% o (gq(1,1)]eM4q(0,1)) o <2_g2> _ o-h2¢?) T

x
x
x
x
x

Linear potential V(I) = o [ of gg pair for strong g — 00, G lngz: Flux tube/string potential!

—> Every Gauge Theory has Confinement, in any d > 2! “Christmas”! Even in U(1) (QED)??

Weak-coupling limit g — 0: the more plaquettes, the more important. =—> Unsolvable.
Lattice QCD “simple” for g > 1, complicated for g < 1: complements perturbative QCD.




(g) Very Rough Outline of Lattice “Computations”

Euclidean lattice = Partition Function in 4 Euclidean dimensions. = Heavily borrow from Stat. Phys.

(1) Create “Pure Glue” Ensemble: Throw dice for values of I/ at each link, weighted with action in PI.

Relaxation/Updating to equilibrate system (— Ising model).
Importance Sampling: prefer configurations with small action.



(g) Very Rough Outline of Lattice “Computations”

Euclidean lattice = Partition Function in 4 Euclidean dimensions. = Heavily borrow from Stat. Phys.

(1) Create “Pure Glue” Ensemble: Throw dice for values of I/ at each link, weighted with action,in PI.

W
Lo o -l g |z W
Relaxation/Updating to equilibrate system (— Ising model). TP TaN D ,F,.J i i i
. . . . . A Y J/ ) ) b pne ! é_’
Importance Sampling: prefer configurations with small action.”j[tt |\ /| | -
: NS VL};;@»@;Z,?F(@, 3
(2) Throw in appropriate quark sources at 7z = 0 & Tg: Shoute 13 O v{ L irellax
e.g. (uud) with quantum numbers of proton; ) 4 EunREEn
but does not need to be very accurate representation! purtglue || NI .

/ [D¥) [DW] [Du] e SEF YU o (uud (T e~ |uud (15 = 0))
insert complete set of phys. states = Z(uud|e_H ’E|n) (n|uud)
n
phys. states are eigenstates to Hg with energies Ej, = Z(uud|e_E” "E1n) (n|uud)
n
let system relax in Euclidean time tx: o Zan e EniE _y o ROIE for ) tg LTk
n

— At “intermediate times” far away from source/sink 0 < 1t << TE, exponential decay guarantees
only lowest physical state with quantum numbers of source & sink survives: Filter out ground state.

—> Read off energy Ey = M mass of lowest state in correlation plots: “Plateau Plots”.



(g) Very Rough Outline of Lattice “Computations”

Euclidean lattice = Partition Function in 4 Euclidean dimensions. = Heavily borrow from Stat. Phys.

(1) Create “Pure Glue” Ensemble: Throw dice for values of I/ at each link, weighted with action,in PI.

W
Lo o -l g |z W
Relaxation/Updating to equilibrate system (— Ising model). TP TaN D ,F,.J i i i
. . . . . A Y J/ ) ) b pne ! é_’
Importance Sampling: prefer configurations with small action.”j[tt |\ /| | -
: NS VL};;@»@;Z,?F(@, 3
(2) Throw in appropriate quark sources at 7z = 0 & Tg: Shoute 13 O v{ L irellax
e.g. (uud) with quantum numbers of proton; ) 4 EunREEn
but does not need to be very accurate representation! purtglue || NI .

/ [D¥) [DW] [Du] e SEF YU o (uud (T e~ |uud (15 = 0))
insert complete set of phys. states = Z(uud|e_H ’E|n) (n|uud)
n
phys. states are eigenstates to Hg with energies Ej, = Z(uud|e_E” "E1n) (n|uud)
n
let system relax in Euclidean time tx: o Zan e EniE _y o ROIE for ) tg LTk
n

— At “intermediate times” far away from source/sink 0 < 1t << TE, exponential decay guarantees
only lowest physical state with quantum numbers of source & sink survives: Filter out ground state.

—> Read off energy Ey = M mass of lowest state in correlation plots: “Plateau Plots”.

(3) Set Scale: All quantities in units of a = pick few observables to fix a,m, ... ; then predict rest.



Temporal Correlation Function Example [Wagner]

Everything (masses, energies, even input m,)
is given in units one dimension-ful quantity: lattice spacing a.

lim (B-meson(Atg)|e A |B-meson (g = 0)) oc e A MB-meson

Atg—00
- ‘ ‘ ‘ ‘ ‘ - 0.4 : ‘
0.09 (@1 Of(ty) Og(ty) 1) —— "
0.08 - A exp(-mg At) —— | 0.35 my a
a8 o007t points included in the fit <—— | 03 | points included in the fit -— |
S 006¢ 1 o 0251
S 005 1 £ o2f
< 004 1 g
O 03l | 0.15
e} L
<002 1 0.1
0.01 B 0.05
0 0 ‘
0 12 0 2 4 6 8 10 12 14

Figure 3: left: the temporal correlation function of a B meson creation operator as a
function of the temporal separation (taken from [12]); right: the effective mass of the
kaon as a function of the temporal separation (taken from [13]).



A More Realistic Example — And Some People’s Fantasies

001 0.06 rrr 1] 111 [ 11 11 T r T
L o6 _
0.04 2] 4 —
,3:\ 0 | e He 4
= 0.02 - - .
W e
< —0.01 | L o 1
e @----—-—-—--- o
L ) _
-0.02 Dagoooo-
00 20.02} §:_ - .
0 2 4 6 8 10 12 14 r 4 o b
t(.u) -0.04 s -
[NPLQCD [arXiv:1508.07583v1 [hep-lat]]] O I I I & 2 I
. : ' 4 12 2
Effective-mass shift AE = 2My — M (deuteron) ’ * o 0
. 3 . . . .
in 32° x 96 lattice, using lattice units. [HALQCD [arXiv:1502.04182v2 [hep-lat]]]

Fit-error construction: At least 3 different people use Eff. shift AE = 4My —M(4He) in (4.3fm)3

different algorithms to identify plateaus independ- (484 lattice), in lattice units.

ently, each providing an error estimate. Total error Quote: “Fit result with one standard deviation er-

is statistical sum of all. ror band and total error including the systematic

Watch out for strong correlation of points: one is expressed by solid and dashed lines, re-
same lattice data! spectively.



http://arxiv.org/abs/1508.07583v1
http://arxiv.org/abs/1502.04182v2

(h) A Few Selected Problems in Lattice QCD

QCD will be solved by Christmas. [Wilson 1974 in seminars] (Hence name “Christmas Paper”.)

(1) Lattice Discretisation Breaks (Euclidean) Rotational Invariance

= No angular momentum conservation or partial waves, but can use discrete cubic symmetries.

Conceptually largely under control but can be numerically quite expensive; gets better as a — 0.



(h) A Few Selected Problems in Lattice QCD

QCD will be solved by Christmas. [Wilson 1974 in seminars] (Hence name “Christmas Paper”.)

(1) Lattice Discretisation Breaks (Euclidean) Rotational Invariance

= No angular momentum conservation or partial waves, but can use discrete cubic symmetries.

Conceptually largely under control but can be numerically quite expensive; gets better as a — 0.

(2) Need to Fit Physics into Box i.e. “have all meson clouds inside box”

T
Lightest hadron: m; = 140MeV —> Agompton ~ — ~ 4fm,
Mz

but resolution a < ~ (0.1fm.

1
~ 1GeV

— Need L > 4fm, a < 0.1fm, N* > (40)* ~ 2.5M quite expensive.

L

Way out: Compute at larger m; = smaller L; then extrapolate to physical m; using model-

independent, well-understood mz-dependence of Chiral Effective Field Theory. — next section



(h) A Few Selected Problems in Lattice QCD

(3) Light Quarks Computationally Extremely Expensive  Big problem for pion Physics from lattice.

Small energy/action penalty e SElmd] — easy to create light gg pairs in vacuum fluctuations.
i . - , - Tl T LT

T

e

[BEEENE-7%ES

Such quark-pair vacuum fluctuations are called “disconnected”: lines not connected to sources
(cf. valence quarks). But they are still moving in gluon background: These are not Feynman diagrams!

Historically, such “disconnected” quark lines were just dropped: Quenching now only for tests.



(h) A Few Selected Problems in Lattice QCD

(4) Can Only “Measure” Exponential Decays & Static Observables

e MEE — static statistical system in 4 spatial dimensions

——> Scattering phase shifts only by induced energy-shift (Lischer's method — later).

Especially challenging for shallow bound states, like deuteron:

Mgeuteron = My + My — Eg = [2000 — 2|MeV = ¢~ CMN=Ep)iz oy o=2MN 1 () ] %-gffect]
— Need to measure tiny energy difference to two-free-nucleons!

Terrible signal-to-noise for Nuclear systems.
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(h) A Few Selected Problems in Lattice QCD

(4) Can Only “Measure” Exponential Decays & Static Observables

e MEE — static statistical system in 4 spatial dimensions

——> Scattering phase shifts only by induced energy-shift (Lischer's method — later).

Especially challenging for shallow bound states, like deuteron:

Mgeuteron = My + My — Eg = [2000 — 2|MeV = ¢~ CMN=Ep)iz oy o=2MN 1 () ] %-gffect]
— Need to measure tiny energy difference to two-free-nucleons!

Terrible signal-to-noise for Nuclear systems.

. Lo 1 g0
(5) Weak-Coupling Limit is Hard exp —ﬁtr[l/lg] =— 0 tiny signal
8

(6) Fermion Doubling Problem not conceptual, just annoying — HW

(7) Insatiable Hunger for Bigger and Faster Computers

In my view, learn about Nature by combining lattice, perturbative and Y EFT:
well-defined, systematically improvable descriptions of QCD, estimating theory uncertainties,
in complementing and partially overlapping energy regimes.




(i) Very Few (Even More Selected) Lattice Results

Extrapolation to Physical Masses

Use known low-energy Nuclear Physics (Chiral EFT) to cut down on computational cost.
Not just a linear extrapolation!

—————— 4+ a~0.125 fm
0.5F \ —————— « a~0.085fm| -
! ' ~0.065 f
 physical M, ¢ a m
O i. PR T R N SN ST SR SO AT TR SRR SR S (N S ST S T N T S T
0.1 0.2 0.3 0.4 0.5

2 2
M- [GeV’]
[Duerr et al. Science (2008)]



Static Potential between Infinitely Heavy Quarks (Quarkonium)

Infinitely heavy == no recoil == no retardation or colour radiation = Potential makes sense.

HH B e 1B bd

: k%¢2=0.1370
: k%e8=0.1380
: £%2=0.1390
: k%°2=0.1395
: k%*2=0.1398

Appears quite linear.

--------------- _ 2*Mgtet

[Kenway UKQCD 1999]



Energy Density: Flux Tube for a Heavy Meson LLSlCEI9EE Gl A0S

click here for homepage]



http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html
http://home.gwu.edu/~hgrie/lectures/nupa-script+slides/FluxTubeAnim2.gif

click here for homepage]

[Leinweber et al. 2003,
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http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html
http://home.gwu.edu/~hgrie/lectures/nupa-script+slides/VacuumRespAction16t32_Yshape8med.gif

click here for homepage]

[Leinweber et al. 2003,
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http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html
http://home.gwu.edu/~hgrie/lectures/nupa-script+slides/ActionAPE5LQanimXs30.gif

QCD Precision Spectroscopy: Quarkonia & Heavy-Light Mesons

12

10

MESON MASS (GEV)

L By
n, ® XY
My —o—%—Y

B,.—e— ©

B, B

n =
C

T R T

D

D' ==

hy2P)  Xb2op)

X
—o—="0 _o vyaip)
o558 K2 1p)

expt

fix parameters X
postdictions —H—
predictions —&—

Xc2
N Xel
¢ %Xc0

[PDG 2013 Fig. 14.8]

Ne, X', Y set scales of
me, mp, aS(Q(Z))
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QCD Spectroscopy: Systems With Light Quarks

Approaching physical pion masses, good accuracy.

2000

1500

I
| Budapest-Marseille-Wu

ppertal collaboration

—— K

—— T

K™

—— experiment
——= width
o input
¢ QCD

[Duerr et al. Science (2008), from PDG 2013 Fig. 14.7]




QCD Spectroscopy: Glueballs

Colour-neutral bound states of glue are unique signal of Non-Abelian Gauge Theories.

12 0 — Glueballs: Any state dominated by glue.
In particular when glue dictates

10 + 2+ —g: N | 4 quantum numbers.
3 —i‘*— v ; i
3+ — Discovery would allow direct test of QCD
8 L . . .
o — Does not exist in Constituent Quark model!
P — . — ] 3 —
o 0 — — > Problem: Light-quark admixture
E 6 [ 2++ ............ 0 g . .
o s — Lattice computation:
E

12 Bad signal-to-noise,
quark loops give huge corrections!
“Quenched” computation:
. . 11 GlueX: Glueball search in Hall D is major
2 + nodisconnected quark lines.
motivation for JLab 12GeV-upgrade.

Unique experimental signal difficult.

++ —+ +—
PC
[Morningstar/Peardon Phys. Rev. D60 (71999/) 034509]



Hadron Polarisabilities: GW Leads Connecting Data & QCDaw focus

(N) £

Needs to be phrased as energy-difference: AE = —271 o,

= ¢ p,n static Qg1 fitl to exp |

A n: Alexandru/Lujan/... 2014
X+ p,n: Detmold et al. 2010 -
v n: Engelhardt 2007

— ,—pn xEFT hg/... 2015

10

proton

ag: [107*m?]

——

neutron ————___

100 200 300 400 500 600 700 800
my [MeV]

Neither Approach Uses The Other To Fit!

[lattice: Lujan/Alexandru/Freeman/Lee [arXiv:1411.0047 [hep-lat]];
chiral extrapolation: hgrie/McGovern/Phillips [arXiv:1511.01952 [nucl-th]];
Downie/Feldman take data at HIyS, MAMI,. . .]

PHYS 6610: Graduate Nuclear and Particle Physics |, Spring 2023 = =

H. W. GrieBhammer, INS, George Washington University  111.3.28


http://arxiv.org/abs/1411.0047
http://arxiv.org/abs/1511.01952

Lischer 1991

Phase Shifts Via Energy-Shift: Lischer’s Method (30 sec) voom since

ca. 2010

Problem: Lattice QCD gave up time-dependence by rotation to Euclidean time.

Solution: can still “feel” interactions in finite volume (cf. -independent scattering theory)

e.g. 7T scattering: compute AE = E — 2my = 21/ k2 4+ m2 — 2m; = get ky, insert into

A
1 |<
Liischer’s formula k, cot 6 (k,) = — lim — 471 A (with error bars!
neotd(ky) = 7 lim ) CRT ( )
Jj J 2
200 [ J L=24 =0
b A Valid for: below first inelasticity,
[ J L=24,|P=1
150F H Levingons Theorem L > interaction range ry ~ —
- Experimenta myg
g 100l i but can have scatt. length a ~ L!
oy \ i . :
) % ; Many extensions available and
muAT i being worked on:
© \ 3-body, box with different lengths,
I \ coupled channels,. ..
- 50} _ _ _ _ i _ _ [Déring/Mail. ..., hg...]
0 01 0.2 0.3 0.4 05 06 0.7
k/my

NN scattering at mgz = 805MeV

[NPLQCD PRC88 (2013) 124003]



Phase Shifts Computed Via Energy-Shift: Tiny Effect GV focus:

Alexandru, Déring,. . .

7T phase shifts identify p resonance; unphysical m; = 316MeV > mi™® = 140MeV.
200

I 11
>

150
&N
O
=,
~~
g i
A 100 Estabrooks_ NPB79_301_Ref. [33]
i Fit II to Lattice data
E Lindenbaum_PLB274 492 Ref. [32]
_"’ Lattice data fitted, m = 316 MeV
- Lattice data, m_= 316 MeV
50

Hyams_NPB100_205_Table 1
UChPT, phys. m_

KK channel
KK channel and phys. m_

400 600 - 800 1000 1200 1400
E [MeV]

1T T 1 I T 1T 1 1 I 1T T T I 1 T 1




Alternative Worlds: Lightest Nuclei at Higher Pion Masses ﬂ,‘:tggg

Merger of EFT and lattice has started exploring how few-nucleon systems emerge from QCD.

140 - .
120 - EFT(#) .
140 MeV
= 100 + 300 MeV
§ 20 450 MeV g8 |
— i 510 MeV mmmm _
al
éj 60 | 806 Mev l:l H o
s
= L
40 - .
My —
0| g Iy
28 = :
0 i _ = xYEFT 190-210 MeV
nn D SH o

[J. Kirscher [arXiv:1509.07697 [hep-lat]] (got his PhD in GW’s EFT group)]

Surprisingly little change in few-nucleon systems — but n7n becomes bound when 15 increased!



http://arxiv.org/abs/1509.07697

Next: 4. Pions and 0, 1, 2,...Nucleons

Familiarise yourself with: [(Goldstone: CL 5; Ryd 8.1-3);
CL 5; Ryd 8.1-2; Ber 2, 3;
Scherer/Schindler: Primer y EFT;
Ericson/Weise: Pions and Nuclei Chap. 9— see me!]
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