Additional Practise Sheet; Green's Functions and PDEs Completely voluntary.

If you want, we can discuss your solutions in the Final Question Time of the semster.
No extra points are awarded - the values are only meant as grade of difficulty here.

1. Frobenius' Method (6P): We will find a solution to the differential equation

$$
4 x f^{\prime \prime}(x)+2(1-x) f^{\prime}(x)-f(x)=0 \text { by Frobenius' ansatz } f(x)=x^{\alpha} \sum_{n=0}^{\infty} a_{n} x^{n} a_{0} \neq 0
$$

a) $(\mathbf{2 P})$ Show that the indicial equation dictates that $\alpha=0$ or $\alpha=\frac{1}{2}$.
b) $(\mathbf{4 P})$ For the case $\alpha=0$, derive the recurrence relation for the coefficients a_{j} and construct the closed answer.

Note: The case $\alpha=\frac{1}{2}$ is straight-forward and therefore boring. Do not do it.
2. A Two-dimensional Green's Function (4P per correct, independent way) Show that the Green's function to the two-dimensional Poisson equation "without boundaries at infinity" is

$$
G\left(\vec{r}, \vec{r}^{\prime}\right)=\alpha \ln \frac{\left|\vec{r}-\vec{r}^{\prime}\right|}{C}
$$

where C is an arbitrary constant. Determine the constant α. There are several ways to do this problem, given the toolchest developed in the last semester. Each correct way gives 4 points.
You might want to recall also some Green's functions of one- and three-dimensional "empty" space.
3. Image Charges and Green's Function for Plates at an Angle (4P) A point charge q is located at $\vec{r}_{0}=(a, a, 0)$ in front of two infinitely long, perfectly conducting, grounded plates which meet at the origin in an angle of 90°; see figure for details. The problem is three-dimensional. Use the method of image charges (you need 3 images).

a) $(\mathbf{2 P})$ Determine the potential everywhere.
b) $(\mathbf{2 P})$ Derive the induced surface charge density on the plates at $z=0$. Sketch!
4. Spherical Harmonics (7P):
a) $(\mathbf{2 P})$ Determine the parity of $Y_{l m}(\theta, \phi)$.
b) (3P) Inspired by a good book, prove the addition theorem for spherical harmonics:

$$
P_{l}(\cos \alpha)=\frac{4 \pi}{2 l+1} \sum_{m=-l}^{l} Y_{l m}^{*}(\Omega) Y_{l m}\left(\Omega^{\prime}\right)=\sqrt{\frac{4 \pi}{2 l+1}} Y_{l 0}(\alpha, 0),
$$

where α is the angle between (θ, ϕ) and $\left(\theta^{\prime}, \phi^{\prime}\right)$, i.e. $\cos \alpha=\cos \theta \cos \theta^{\prime}+\sin \theta \sin \theta^{\prime} \cos \left(\phi-\phi^{\prime}\right)$.
c) $(\mathbf{2 P})$ Construct the first three Legendre polynomials from the generating function.

Please turn over.

5. Square with Boundary Conditions in Electrostatics (8P): The sides of a square (length of sides L) are made of some material such that the boundary conditions on the potential are

$$
\Phi(x, y)=\left\{\begin{array}{ll}
\Phi_{0} \sin \frac{3 \pi x}{L} & \text { on the upper side, } y=L \\
0 & \text { on all other sides. }
\end{array} .\right.
$$

The problem is two-dimensional. There are no charges inside the square; see figure.
a) (1P) Are these boundary condition of the Dirichlet or von-Neumann type?
b) (5P) Determine the potential $\Phi(x, y)$ everywhere inside the square.

Hint: Show that you need to solve differential equations (you need to determine the constant of separation α):

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} X(x)=-\alpha^{2} X(x), \frac{\mathrm{d}^{2}}{\mathrm{~d} y^{2}} Y(y)=\alpha^{2} Y(y)
$$

with the boundary conditions $X(x=0)=0=X(x=L)$ and $Y(y=0)=0$.
Fail-safe point: $\Phi(x, y) \propto \sin \frac{3 \pi x}{L}\left[\mathrm{e}^{\frac{3 \pi y}{L}}-\mathrm{e}^{\frac{-3 \pi y}{L}}\right]$.
c) $(\mathbf{2 P})$ Using a pillbox construction, determine the charge density on the lower plate, $y=0$.
6. Legendre Polynomials (2P) Prove that $\int_{-1}^{1} \mathrm{~d} x P_{l}(x)=0$ for l a positive integer.
7. Electrostatic Multipole Moments (7P): An infinitesimally thin, conducting, circular ring of radius R carries the homogeneous line charge density μ. It is centred at the origin in the $x y$ plane, see figure.

Hints: Determine all spherical multipole moments with respect to the origin.
If multipole moments vanish, you can substitute a calculation by a short argument.
Recall that $Y_{l 0}(\theta, \phi) \propto P_{l}(\cos \theta)$, so that some results can also be written using Legendre polynomials at a given value, which you need to look up.
a) (1P) Convince yourself that the charge density can take the form $\rho(r, \theta, \phi)=\frac{\mu}{r} \delta(r-R) \delta(\cos \theta)$. Is this a Dirichlet or von-Neumann boundary problem?
b) (5P) Determine all spherical multipole moments for $r \gg R$. Give explicit answers for the monopole, dipole and quadrupole moments.
c) (1P) Determine the scalar potential far from the origin as expansion in a suitable, small parameter.
d) $(\mathbf{3 P})$ Determine the scalar potential close to the origin as expansion in a suitable, small parameter.

