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Problem Sheet 7 Due date: 8 March 2017 16:00

For full credit, you should hand in a tidy and efficiently short presentation of your results and how they come about,
in a manner that can be understood and reproduced by your peers. All problems and solutions are for your personal
use only. Please do not pass solutions or problems on to incoming or other students who have not taken the course
(yet). Noncompliance with these rules is a breach of academic integrity.
Handwritten solutions must be on 5x5 quadrille paper; electronic solutions must be in .pdf format.
I reserve the right to award zero points for any illegible, chaotic or irreproducible section of your homework.

News and .pdf-files of Problems also at http://home.gwu.edu/˜hgrie/lectures/edyn17/edyn17.html.

1. Atomic Dipole- and Quadrupole-Radiation, Part II (10P): Electric quadrupole radiation in
atoms is considerably weaker than electric dipole radiation. It can thus be neglected – except if electric
dipole radiation is forbidden e.g. due to selection rules. We continue to discuss a classical analogon.

Point-charges move in the xy-plane on a circle with radius l in the mathematically positive sense with
constant, non-relativistic angular velocity. The atomic nucleus rests at the centre, making the atom as
a whole electrically neutral. We dealt with the electric dipole last week. The quadrupole can now be
thought of as two point-charges q/2 which are opposite to each other and rotate with angular velocity
ω0/2; see figures. Consider only the far-zone, in the lowest non-vanishing multipole approximation.
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After last week’s dipole, we now concentrate on the the quadrupole, right figure.

Hint: You can again copy equations from textbooks. Or you use the opportunity to start from the
wave-equation and derive step-by-step the solution by yourself, understanding radiation theory in this
simple example. You may also choose to solve the problem with the alternative radiation formula in
coordinate space presented in problem 5 below.

a) (2P) Find the time-dependent, Cartesian dipole and quadrupole moments in the right figure.

b) (2P) Determine the retarded vector-potential ~Aret in the far-zone and the frequency (or wave-
length) of the emitted radiation.

c) (3P) Determine the time-dependent electric and magnetic field in the far-zone.

Hint: You might have to derive ~er × (~ex + i ~ey) = eiφ (~eφ cos θ − i~eθ)

d) (3P) Determine the time-averaged power radiated into an arbitrary solid angle, and the total
radiated power. Discuss and sketch the radiation characteristics (angular distribution) of this
quadrupole. Compare in particular to last week’s dipole.

Some possible answers in Cartesian and spherical coordinates (r, ϑ, ϕ), respectively:
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Please turn over.
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2. Radiating Hydrogen Atom (3P): Using the results you derived last week, estimate the life-time
τ of the 2p-state in hydrogen, assuming that the system is classical and the frequency is unchanged
despite of radiative losses, cf. the Bohr-Sommerfeld model of the atom. Compare to the experimentally
measured value τ ≈ 1.6×10−9 s. About how many rotations does the electron make in that time-span?

3. Now we combine what we learned about atomic systems (2P): Compare the total, time-
averaged power of dipole and quadrupole radiation for typical atomic extensions and wave-lengths:
l ∼ 1 Å, λ ∼ 1000 Å. Compare to the case that atomic radius and wavelength are comparable.

4. No Radiation (3P): Consider a spherically symmetric charge distribution which oscillates only ra-
dially with time. Show: This system does not radiate.

5. Another Radiation Formula (3P): We derived in the lecture the general solution of a radiative
problem as
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Show now that at large distances from the source:
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Convince yourself that the first term describes electric dipole radiation, while the second one encodes
electric quadrupole and magnetic dipole radiation – no intricate details necessary. Discuss however in
detail how the long-wavelength approximation must be invoked to make sense of the expansion.

6. Einstein and the Light-Ray (4P): A mono-chromatic light-wave of frequency ωI and energy density
HI travels along the ~ex-axis in an inertial frame I. Determine the frequency and energy density in
another inertial frame II which moves at velocity ~v relative to I (usually ~v 6∝ ~ex!).

Hint: One could e.g. show that H =
ω2

4πc2
aµaµ cos2 k · x for a light-wave Aµ(x) = aµ cos k · x.


