Simple and Immune Relations on Countable Structures*

Sergei S. Goncharov
Academy of Sciences, Siberian Branch
Mathematical Institute
630090 Novosibirsk, Russia
gonchar@math.nsc.ru
Valentina S. Harizanov
Department of Mathematics
The George Washington University
Washington, D.C. 20052, U.S.A.
harizanv@gwu.edu
Julia F. Knight
Department of Mathematics
University of Notre Dame
Notre Dame, IN 46556, U.S.A.
julia.f.knight.1@nd.edu
Charles F. D. McCoy
Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706, U.S.A.
mccoy@math.wisc.edu

Abstract

Let \mathcal{A} be a computable structure and let R be a new relation on its domain. We establish a necessary and sufficient condition for the existence of a copy \mathcal{B} of \mathcal{A} in which the image of $R(\neg R$, resp.) is simple (immune, resp.) relative to \mathcal{B}. We also establish, under certain effectiveness conditions on \mathcal{A} and R, a necessary and sufficient condition for the existence of a computable copy \mathcal{B} of \mathcal{A} in which the image of $R(\neg R$, resp.) is simple (immune, resp.).

[^0]
1 Introduction and Notation

We investigate Post-type computability-theoretic properties of an additional relation on the domain of a countable structure. The domain of any infinite countable structure can be identified with an infinite subset of ω, the set of all natural numbers. Thus, such a domain is equipped with an ordering. We denote structures by script letters, and their domains by corresponding capital Latin letters. Unless otherwise stated, we assume that L is a computable relational language. If L is the language of a structure \mathcal{B}, then $L(B)$ is the language expanded by adding a constant symbol for every $b \in B$. Let $\mathcal{B}_{B}=(\mathcal{B}, b)_{b \in B}$ be the natural expansion of \mathcal{B} to the language $L(B)$.

The atomic diagram of \mathcal{B}, denoted by $D(\mathcal{B})$, is the set of all atomic and negated atomic sentences of $L(B)$, which are true in \mathcal{B}_{B}. We can identify $D(\mathcal{B})$ with a subset of ω by using a suitable Gödel coding of sentences. Turing degree of a structure \mathcal{B} is the Turing degree of its atomic diagram $D(\mathcal{B})$. We say that a set X is computably enumerable (c.e.) relative to \mathcal{B} if X is c.e. relative to $D(\mathcal{B})$. A structure is computable if its domain is a computable set and its atomic diagram is computable. Equivalently, a structure is computable iff its Turing degree is $\mathbf{0}$. By $F: \mathcal{A} \cong \mathcal{B}$ we denote that F is an isomorphism from \mathcal{A} onto \mathcal{B}. We call any structure isomorphic to \mathcal{A} a copy of \mathcal{A}.

Throughout the paper, we will denote by \mathcal{A} an infinite computable structure, and by R a new infinite co-infinite relation on A. A relation on the domain of \mathcal{A} is new if it is not named in the language of \mathcal{A}. Without loss of generality, we assume that R is unary. We are interested in syntactic conditions under which there is a computable copy of \mathcal{A} in which the image of R is simple. We may also ask when the image of $\neg R$ is only immune. Recall (see [12] and [10]) that a set is immune if it is infinite and contains no infinite c.e. subset. A set is simple if it is c.e. and its complement is immune.

Problem 1. Under what syntactic conditions is there an isomorphism F from \mathcal{A} onto a computable copy such that $\neg F(R)$ is immune?

Problem 2. Under what syntactic conditions is there an isomorphism F from \mathcal{A} onto a computable copy such that $F(R)$ is simple?

For a computable linear order \mathcal{A}, Hird [6] determined which co-c.e. intervals have immune image on some computable copy: those of order type ω with no supremum in \mathcal{A}; those of order type ω^{*} with no infimum in \mathcal{A}; those of order type $\omega^{*}+\omega$ and with neither supremum nor infimum in \mathcal{A}. Remmel [11] established that if \mathcal{A} is a computable Boolean algebra with infinitely many atoms, then there is a computable copy \mathcal{B} of \mathcal{A} such that the set of all atoms of \mathcal{B} is immune.

Hird [7] and Ash, Knight and Remmel [1] investigated a related notion, the so-called quasi-simplicity of relations on computable structures. Hird proved that, under certain decidability condition on \mathcal{A} and R, there is an isomorphism F from \mathcal{A} onto a computable copy \mathcal{B} such that $F(R)$ is quasi-simple. Ash, Knight and Remmel gave effectiveness conditions on \mathcal{A} and R, which are sufficient for obtaining such a quasi-simple relation $F(R)$ in an arbitrary nonzero c.e. Turing
degree. Certain quasi-simple relations coincide with simple relations. However, there are computable structures which contain no simple substructures, but have quasi-simple substructures in every non-zero c.e. Turing degree. A well studied example of such a structure is \mathcal{V}_{∞}, a computable \aleph_{0}-dimensional vector space over a computable field, such that for every $n \in \omega, \mathcal{V}_{\infty}$ has a computable n-ary dependence relation. If \mathcal{V} is an infinite c.e. subspace of \mathcal{V}_{∞}, then the set V is not a simple subset of V_{∞}. Assume that $V \neq V_{\infty}$. Let $a \in V_{\infty}-V$. Then $a+V={ }_{\text {def }}\{a+v: v \in V\}$ is a c.e. set such that $(a+V) \cap V=\emptyset$.

Results establishing various equivalences of syntactic and corresponding semantic conditions in computable copies of \mathcal{A} usually involve additional effectiveness conditions, expressed in terms of \mathcal{A} and R. To discover syntactic conditions governing the algorithmic properties of images of R in computable copies of \mathcal{A}, it is sometimes helpful to consider arbitrary copies of \mathcal{A} and relative versions of the algorithmic properties. One advantage is that we may use the forcing method instead of the priority method-the latter is more complicated. In addition, the relative results should require no additional effectiveness conditions, which often mask the syntactic conditions. Examples of such relative results are presented in [2] and [3].

Definition 1. (i) A new relation on a countable structure \mathcal{B} is immune relative to \mathcal{B} if it is infinite and contains no infinite subset that is c.e. relative to \mathcal{B}.
(ii) A new relation on a countable structure \mathcal{B} is simple relative to \mathcal{B} if it is c.e. relative to \mathcal{B} and its complement is immune relative to \mathcal{B}.

Thus, we are led to also consider the following problems.
Problem 3. Under what syntactic conditions is there an isomorphism F from \mathcal{A} onto a copy \mathcal{B} such that $\neg F(R)$ is immune relative to \mathcal{B} ?

Problem 4. Under what syntactic conditions is there an isomorphism F from \mathcal{A} onto a copy \mathcal{B} such that $F(R)$ is simple relative to \mathcal{B} ?

Let $W_{0}, W_{1}, W_{2}, \ldots$ be a fixed effective enumeration of all c.e. sets. Let $X \subseteq \omega$. Then $W_{0}^{X}, W_{1}^{X}, W_{2}^{X}, \ldots$ is a fixed effective enumeration of all sets that are c.e. relative to X. For a structure $\mathcal{B}, W_{e}^{\mathcal{B}}$ stands for $W_{e}^{D(\mathcal{B})}$. By \leq_{T} we denote Turing reducibility, and by \equiv_{T} Turing equivalence. We write $\mathcal{B} \leq_{T} X$ if $D(\mathcal{B}) \leq_{T} X$.

By \vec{c} we denote a finite sequence (tuple) of elements; we write $a \in \vec{c}$ to indicate that $a \in \operatorname{ran}(\vec{c})$, and $\vec{c} \cap \vec{d}=\emptyset$ to denote that $\operatorname{ran}(\vec{c}) \cap \operatorname{ran}(\vec{d})=\emptyset$. A sequence of variables displayed after a formula includes all of its free variables. If a formula is in prenex normal form, then the matrix of the formula is its part after the quantifiers. Almost all means all but finitely many.

2 Relatively Immune Relations

A Σ_{1} formula $\varphi(\vec{x})$ is an infinitary formula of the form

$$
\bigvee_{i \in I} \exists \vec{u}_{i} \psi_{i}\left(\vec{x}, \vec{u}_{i}\right),
$$

where for every $i \in I, \psi_{i}\left(\vec{x}, \vec{u}_{i}\right)$ is a finitary quantifier-free formula. We assume that the finitary quantifier-free formulas are coded by some effective Gödel numbering, and ψ_{i} is the $i^{t h}$ formula under this listing. If the index set I is c.e., then we have a computable Σ_{1} formula. (We can define, by induction, computable Σ_{α} and Π_{α} formulas for all $\alpha<\omega_{1}^{C K}$. Such formulas are called computable infinitary formulas.) If we are to construct an isomorphic copy of \mathcal{A} in which the image of $\neg R$ is relatively immune, there must be no infinite subset D of $\neg R$ definable in \mathcal{A} by a computable Σ_{1} formula $\varphi(\vec{c}, x)$ (with a finite tuple of parameters \vec{c}). This obvious necessary condition turns out to be sufficient.

Theorem 2.1. Let \mathcal{A} be a computable L-structure, and let R be a unary infinite and co-infinite relation on A. Then the following are equivalent:
(i) For all copies \mathcal{B} of \mathcal{A} and all isomorphisms F from \mathcal{A} onto $\mathcal{B}, \neg F(R)$ is not immune relative to \mathcal{B}.
(ii) There are an infinite set D and a finite tuple \vec{c} such that $D \subseteq \neg R$ and D is definable in \mathcal{A} by a computable Σ_{1} formula $\varphi(\vec{c}, x)$.

Proof: The rest of this section consists of a proof that $(i) \Rightarrow(i i)$. We build a "generic" copy (\mathcal{B}, S) of (\mathcal{A}, R). Under the assumption that $\neg S$, the image of $\neg R$, is not immune relative to \mathcal{B}, we produce the set D and a tuple \vec{c} as in (ii). Let B be an infinite computable set, the universe of \mathcal{B}. The forcing conditions are the finite 1-1 partial functions from B to A. The set \mathcal{F} of these conditions is partially ordered by extension \subseteq. We use letters p, q, r, etc. to denote elements of \mathcal{F}.

Let \mathbf{R} be an additional unary relation symbol not in L. As a forcing language, we take a propositional language P in which the propositional variables are just the atomic sentences in the language $(L \cup\{\mathbf{R}\})(B)$. Let P^{\prime} be the sublanguage consisting of atomic sentences that are in the language $L(B)$ (without $\mathbf{R})$. Let \mathcal{T} be the set of computable infinitary sentences in the language P, and let \mathcal{T}^{\prime} be the set of computable infinitary sentences in the language P^{\prime}.

Among the sentences are those expressing the following facts in (\mathcal{B}, S), the copy of (\mathcal{A}, R) :

- $W_{e}^{\mathcal{B}}$ is infinite (expressed in \mathcal{T}^{\prime});
- $W_{e}^{\mathcal{B}} \subseteq \neg S($ expressed in $\mathcal{T})$.

We consider only computable infinitary formulas in normal form-with negations occurring only in finitary open subformulas. We write $\neg(\varphi)$ for the computable infinitary sentence that is dual to φ-equivalent to the negation, but
in normal form. The constants of a sentence φ are the constants appearing in the propositional variables in φ.

We define forcing- the relation $p \Vdash \varphi$, for φ in \mathcal{T}.

1. If φ is a finitary sentence of \mathcal{T}, then $p \Vdash \varphi$ iff the constants of φ are all in $\operatorname{dom}(p)$, and p (under natural interpretation of constants) makes φ true in (\mathcal{A}, R).
2. If φ is a disjunction $\mathbb{W}_{i \in I} \psi_{i}$, then $p \Vdash \varphi$ iff there is $i \in I$ such that $p \Vdash \psi_{i}$.
3. If φ is a conjunction $\mathbb{M}_{i \in I} \psi_{i}$, then $p \Vdash \varphi$ iff for every $q \supseteq p$ and every $i \in I$, there exists $r \supseteq q$ such that $r \Vdash \psi_{i}$.

We say that q decides φ if q forces either φ or $\neg(\varphi)$. We have the usual forcing lemmas.

Lemma 2.2. For any φ, and any p and q, if $p \Vdash \varphi$ and $q \supseteq p$, then $q \Vdash \varphi$.
Lemma 2.3. For any φ and p, it is not the case that $(p \Vdash \varphi$ and $p \Vdash \neg(\varphi))$.
Lemma 2.4. For any φ and p, there is some $q \supseteq p$ such that q decides φ.
A complete forcing sequence, abbreviated as c.f.s., is a chain $\left(p_{n}\right)_{n \in \omega}$ of forcing conditions, such that for each $\varphi \in \mathcal{T}$, there is some n such that p_{n} decides φ; for each $a \in A$, there is some n such that $a \in \operatorname{ran}\left(p_{n}\right)$; and for each $b \in B$, there is some n so that $b \in \operatorname{dom}\left(p_{n}\right)$. Lemma 2.4 implies the existence of a c.f.s. Given a c.f.s. $\left(p_{n}\right)_{n \in \omega}$, we obtain a $1-1$ function $\cup_{n} p_{n}$ from B onto A. Let $F=_{\text {def }}\left(\cup_{n} p_{n}\right)^{-1}$. Then F induces on B a copy $(\mathcal{B}, F(R))$ of (\mathcal{A}, R). A sentence φ in forcing language P is propositional, but we may also think of it as a predicate sentence in the language $(L \cup\{\mathbf{R}\})(B)$.

We have the following "Truth-and-Forcing" lemma.
Lemma 2.5. For any $\varphi \in \mathcal{T},\left(\mathcal{B}_{B}, F(R)\right) \models \varphi$ iff there is $n \in \omega$ such that $p_{n} \Vdash \varphi$.

By assumption, $\neg F(R)$ is not immune relative to \mathcal{B}. Therefore, there is $e \in \omega$ such that $W_{e}^{\mathcal{B}}$ is infinite and $W_{e}^{\mathcal{B}} \subseteq \neg F(R)$. By the Truth-and-Forcing Lemma, there is $p \in \mathcal{F}\left(p=p_{n}\right.$ for some $\left.n\right)$ such that p forces statements which express these two facts. Let p map \vec{d} onto \vec{c}. We consider the set D consisting of all $a \in A$ for which there exist $b \in B-\{\vec{d}\}$ and $q \supseteq p$ such that $q(b)=a$ and $q \Vdash$ " $b \in W_{e}^{\mathcal{B}}$ ".
(a) The set D is infinite, since it includes the set $F^{-1}\left(W_{e}^{\mathcal{B}}-\{\vec{d}\}\right)$.
(b) The set D contains no element of R, since $p \Vdash$ " $W_{e}^{\mathcal{B}} \subseteq \neg F(R)$ ".
(c) The set D is definable in \mathcal{A} by a computable Σ_{1} formula $\varphi(\vec{c}, x)$ of L.

To see (c), let us analyze what it means for $q \supseteq p$ to force " $b \in W_{e}^{\mathcal{B}}$ ". There must be a halting computation of oracle machine with Gödel index e on input b, which uses only a finite oracle σ. This σ has information about \mathcal{B} expressed by an open sentence $\psi_{\sigma}\left(\vec{d}, b, \vec{b}_{1}\right)$ of $L(B)$ that q makes true in \mathcal{A}. We may assume, without loss of generality, that $b \notin \vec{d}, b \notin \vec{b}_{1}$, and $\vec{d} \cap \vec{b}_{1}=\emptyset$, and that ψ_{σ} expresses these additional facts.

Let $\theta_{b}(x)$ be the following infinitary formula of $L: \mathbb{W}_{\left\{\sigma: b \in W_{e}^{\sigma}\right\}} \exists \vec{y}_{1} \psi_{\sigma}\left(\vec{c}, x, \vec{y}_{1}\right)$. Then there exists $q \supseteq p$ such that $q(b)=a$ and $\left[q \Vdash " b \in W_{e}^{\mathcal{B}}\right.$ " iff $\left.\mathcal{A} \models \theta_{b}(a)\right]$. Consequently, $a \in D$ iff $\mathcal{A} \mid=\mathbb{W}_{b \in \mathcal{B}-\{\vec{d}\}} \theta_{b}(a)$.

3 Relatively Simple Relations

Let \mathcal{A} be an L-structure, and \mathbf{R} be an additional unary relation symbol. If we are interested in c.e. relations, computable Σ_{1} formulas with positive occurrences of \mathbf{R} in the expanded language $L \cup\{\mathbf{R}\}$ play an important role. The importance of this kind of the so-called "positive logic" in the study of c.e. vector subspaces was remarked in [9]. Computable Σ_{1} formulas with positive occurrences of \mathbf{R} were first used in [5], and later in [7], [1] and [4].

Assume that there is an infinite set $D \subseteq \neg R$ such that D is definable in (\mathcal{A}, R) by a computable Σ_{1} formula with finitely many parameters and with only positive occurrences of \mathbf{R}. In any copy \mathcal{B} of \mathcal{A}, if the image of R is c.e. relative to \mathcal{B}, then so is the image of D. Therefore, under this definability assumption, the image of R cannot be made simple relative to \mathcal{B}. It turns out that this is the only obstacle.

Theorem 3.1. Let \mathcal{A} be an infinite computable structure in a relational language L, and let R be a computable unary infinite and co-infinite relation on A. Then the following are equivalent:
(i) For all copies \mathcal{B} of \mathcal{A} and all isomorphisms F from \mathcal{A} onto $\mathcal{B}, F(R)$ is not simple relative to \mathcal{B}.
(ii) There are an infinite set D and a finite tuple of parameters \vec{c} such that $D \subseteq \neg R$, and D is definable in (\mathcal{A}, R) by a computable Σ_{1} formula $\varphi(\vec{c}, x)$ of $L \cup\{\mathbf{R}\}$ with only positive occurrences of \mathbf{R}.

Proof: The rest of this section consists of a proof by contrapositive that $(i) \Rightarrow$ (ii). If R is definable in \mathcal{A} by a computable Σ_{1} formula $\varphi(\vec{c}, x)$, then in any copy \mathcal{B} of \mathcal{A}, the image of R is c.e. relative to \mathcal{B}. If \mathcal{B} is a copy in which the image of $\neg R$ is relatively immune, then the image of R will automatically be relatively simple.

Assume that R is not definable this way. If we form a generic copy \mathcal{B} of \mathcal{A} as in the previous section, then the image of R will definitely not be c.e. relative to \mathcal{B}. (A standard forcing argument shows that if the image of R is c.e. relative to a generic copy \mathcal{B}, then R is indeed definable by a computable Σ_{1} formula with parameters.) Therefore, we shall first define an expanded language L^{*} and
replace the L-structure \mathcal{A} by a L^{*}-structure \mathcal{A}^{*}, in which \mathcal{A} sits as a relativized reduct, such that:
(1) the domain A of \mathcal{A} is definable in \mathcal{A}^{*} by an open formula of L^{*};
(2) the relation R is definable in \mathcal{A}^{*} by a computable Σ_{1} formula of L^{*};
(3) if a set $D \subseteq A$ is definable in \mathcal{A}^{*} by a computable Σ_{1} formula of L^{*} with finitely many parameters, then it is definable in (\mathcal{A}, R) by a computable Σ_{1} formula in $L \cup\{\mathbf{R}\}$ with finitely many parameters and only positive occurrences of \mathbf{R}.

Let $L^{*}=L \cup\left\{\mathbf{R}^{\prime}\right\} \cup\{\mathbf{Q}\}$, and let \mathcal{A}^{*} be the result of extending the universe A by another infinite computable set R^{\prime}, and expanding \mathcal{A} to include the unary relation R^{\prime} and a binary relation Q that is a $1-1$ mapping from R^{\prime} onto R. In \mathcal{A}^{*}, the formula $\neg \mathbf{R}^{\prime}(x)$ defines A, so we have (1). The formula $\exists y \mathbf{Q}(y, x)$ defines R, so we have (2). The lemma below gives (3).

Lemma 3.2. Let $D \subseteq A$. If the set D is definable in \mathcal{A}^{*} by a computable Σ_{1} formula $\varphi(\vec{c}, x)$ of L^{*}, then it is definable in (\mathcal{A}, R) by some computable Σ_{1} formula in $L \cup\{\mathbf{R}\}$ with finitely many parameters and only positive occurrences of \mathbf{R}.

Proof of Lemma 3.2. Assume that there is $\vec{c} \in A^{*}$ and a computable infinitary Σ_{1} formula $\varphi(\vec{c}, x)$ of the form $\mathbb{W}_{i \in I} \exists \vec{y}_{i}\left(\psi_{i}\left(\vec{y}_{i}, \vec{c}, x\right)\right)$, where each ψ_{i} is finitary and quantifier-free, so that $a \in D$ iff $\mathcal{A}^{*} \models \varphi(\vec{c}, a)$. Clearly, $D=\cup_{i \in I} D_{i}$, where $a \in D_{i}$ iff $\mathcal{A}^{*} \models \exists \vec{y}_{i} \psi_{i}\left(\vec{y}_{i}, \vec{c}, a\right)$. Consequently, we need only prove the statement in the case when $\varphi(\vec{c}, x)$ is $\exists \vec{y}(\psi(\vec{y}, \vec{c}, x))$, where ψ is finitary quantifier-free.

Furthermore, we may suppose that the elements of $\vec{c}=\left(c_{1}, \ldots, c_{n}\right)$ are all in A. Indeed, if some c_{i} is in R^{\prime}, we may replace $\exists \vec{y}\left(\psi\left(\vec{y}, c_{1}, \ldots, c_{i}, \ldots, c_{n}, x\right)\right)$ by $\exists z \exists \vec{y}\left[\mathbf{Q}\left(z, c^{\prime}\right) \wedge \psi\left(\vec{y}, c_{1}, \ldots, z, \ldots, c_{n}, x\right)\right]$, where c^{\prime} is the element of R corresponding to c_{i}.

In addition, using the basic rules of predicate logic, we may rewrite $\varphi(\vec{c}, x)$ as a finite disjunction of formulas, each of the form $\exists \vec{y}_{i}\left(\psi_{i}\left(\overrightarrow{y_{i}}, \vec{c}, x\right)\right)$, where every ψ_{i} is a finitary conjunction of atomic formulas and the negations of atomic formulas. Consequently, we may assume that ψ itself is of this form.

Moreover, we may assume that all existential quantifiers are relativized to either \mathbf{R}^{\prime} or $\neg \mathbf{R}^{\prime}$: if $\vec{y}=\left(y_{1}, \ldots, y_{m}\right)$, then we replace $\varphi(\vec{c}, x)$ with 2^{m} disjuncts, each of the form $\exists \vec{y}\left(\psi(\vec{y}, \vec{c}, x) \wedge \pm \mathbf{R}^{\prime}\left(y_{1}\right) \wedge \cdots \wedge \pm \mathbf{R}^{\prime}\left(y_{m}\right)\right)$ (where the symbol $-\mathbf{R}^{\prime}$ represents $\neg \mathbf{R}^{\prime}$, and the symbol $+\mathbf{R}^{\prime}$ represents $\left.\mathbf{R}^{\prime}\right)$. Also, we may suppose that for each variable u such that the conjunct $\mathbf{R}^{\prime}(u)$ appears in ψ, there is a corresponding variable v so that the conjuncts $\neg \mathbf{R}^{\prime}(v)$ and $\mathbf{Q}(u, v)$ appear in ψ.

Next, recall that the language L is relational, and in \mathcal{A}^{*} elements of R^{\prime} satisfy no relations of L among themselves or with other elements of \mathcal{A}^{*}. We claim that we may assume that, except for those of the form $\mathbf{Q}(u, v), \mathbf{R}^{\prime}(u)$, or $\neg \mathbf{R}^{\prime}(u)$, all conjuncts involve only variables relativized to $\pm \mathbf{R}^{\prime}$ and symbols from L. First, we show that we can assume no conjunct is of the form $\neg \mathbf{Q}\left(u_{1}, u_{2}\right)$. If $\mathbf{R}^{\prime}\left(u_{1}\right)$
and $\mathbf{R}^{\prime}\left(u_{2}\right)$ both appear as conjuncts, then $\neg \mathbf{Q}\left(u_{1}, u_{2}\right)$ is true automatically, and so we need not include it in ψ. The same is true if $\neg \mathbf{R}^{\prime}\left(u_{1}\right)$ appears as a conjunct. Finally, if $\mathbf{R}^{\prime}\left(u_{1}\right)$ and $\neg \mathbf{R}^{\prime}\left(u_{2}\right)$ both appear as conjuncts, then $\neg \mathbf{Q}\left(u_{1}, u_{2}\right)$ is equivalent in \mathcal{A}^{*} to the formula $\exists z\left(z \neq u_{2} \wedge \neg \mathbf{R}^{\prime}(z) \wedge \mathbf{Q}\left(u_{1}, z\right)\right)$. Second, a conjunct of the form $\mathbf{S}\left(y_{k_{1}}, \ldots, y_{k_{l}}\right)$, where at least one $y_{k_{i}}$ is in R^{\prime} and \mathbf{S} is a relational symbol from L, is automatically false; and one of the form $\neg \mathbf{S}\left(y_{k_{1}}, \ldots, y_{k_{l}}\right)$, where at least one $y_{k_{i}}$ is in R^{\prime}, is automatically true.

Finally, we can assume that ψ is not an "obviously false" formula. For instance, we assume that it does not contain a conjunct α and a conjunct $\neg \alpha$. Similarly, we assume that if ψ contains a conjunct of the form $\mathbf{Q}\left(u_{1}, u_{2}\right)$, then it also contains $\mathbf{R}^{\prime}\left(u_{1}\right)$ and $\neg \mathbf{R}^{\prime}\left(u_{2}\right)$.

Having argued that we can make all of the above assumptions about φ, we now can produce a formula of $L \cup\{\mathbf{R}\}$, satisfied in (\mathcal{A}, R) by the same elements as the formula $\varphi(\vec{c}, x)$. Notice that for all v in $A, \mathcal{A}^{*} \models \exists u(\mathbf{Q}(u, v))$ iff $(\mathcal{A}, R) \models \mathbf{R}(v)$. Consequently, we delete each quantifier relativized to \mathbf{R}^{\prime} and each conjunct mentioning the variable u corresponding to this quantifier; thus, we rid the formula of all occurrences of \mathbf{Q}. We add a conjunct $\mathbf{R}(v)$ for each variable v corresponding to such a u, and we no longer relativize the remaining quantifiers to $\neg \mathbf{R}^{\prime}$. We are left with the desired formula in $L \cup\{\mathbf{R}\}$. It is satisfied in (\mathcal{A}, R) by the same elements as the formula $\varphi(\vec{c}, x)$.

Having completed the proof of Lemma 3.2, we now have \mathcal{A}^{*} satisfying (1), (2), and (3). From (3) and the hypothesis of the implication we are attempting to prove, it follows that there is no infinite set $D \subseteq \neg\left(R \cup R^{\prime}\right)$ such that D is definable in \mathcal{A}^{*} by a computable Σ_{1} formula of L^{*} with finitely many parameters.

If we apply the result from the previous section to the structure \mathcal{A}^{*} and the relation $R \cup R^{\prime}$, we get an isomorphism F from \mathcal{A}^{*} onto a copy \mathcal{B}^{*} of \mathcal{A}^{*}, with \mathcal{B} corresponding to \mathcal{A} under F, such that the following are true:
(i) $\mathcal{B} \leq{ }_{T} \mathcal{B}^{*}$;
(ii) the relation $F(R)$ is c.e. relative to \mathcal{B}^{*};
(iii) $\neg F\left(R \cup R^{\prime}\right)$ is immune relative to \mathcal{B}^{*}.

Note that $(B \cap \neg F(R))=\left(B^{*}-F\left(R \cup R^{\prime}\right)\right)=\neg F\left(R \cup R^{\prime}\right)$, and any set c.e. relative to \mathcal{B} is c.e. relative to \mathcal{B}^{*} by (i). Consequently, there is no infinite subset of the universe B which is contained in $\neg F(R)$ and is c.e. relative to \mathcal{B}. In other words, $B \cap \neg F(R)$ is immune relative to \mathcal{B}. However, we are not done, because $F(R)$ is not necessarily c.e. relative to \mathcal{B}, and so not necessarily simple relative to \mathcal{B}. To prove the theorem, we need the following lemma from [8].

We call a structure \mathcal{A} trivial if there is a finite tuple \vec{c} of its universe such that the automorphism group of \mathcal{A} includes all permutations of the elements in its universe A that fix \vec{c} pointwise.

Lemma 3.3. Let \mathcal{A} be any structure, and let $X \subseteq \omega$.
(i) If \mathcal{A} is trivial, then all copies of \mathcal{A} have the same Turing degree.
(ii) If \mathcal{A} is not trivial, and $\mathcal{A} \leq_{T} X$, then there is an isomorphism G from \mathcal{A} onto a copy \mathcal{B} such that $X \leq_{T} \mathcal{B} \leq_{T} G \oplus \mathcal{A} \leq_{T} X$.

Using the facts we noted about \mathcal{B}^{*} and Lemma 3.3, we complete the proof of Theorem 3.1. We consider two cases.

Case 1: Suppose \mathcal{A} is trivial.

Modulo a finite tuple \vec{c}, we have complete freedom in defining an automorphism of \mathcal{A}. Moreover, if X and Y have a finite symmetric difference, then X is simple iff Y is simple. Consequently, it is clear that there is an automorphism G of \mathcal{A} for which $G(R)$ is simple.

Case 2: Suppose \mathcal{A} is not trivial.
Let X be the atomic diagram of the structure \mathcal{B}^{*} above, and let F be the isomorphism from \mathcal{A}^{*} onto \mathcal{B}^{*}. If F_{1} is the restriction of F to the domain A, then F_{1} is an isomorphism from \mathcal{A} onto \mathcal{B}. Throughout the rest of this argument, if H is some function with range Y, then $\neg H(R)$ denotes the complement with respect to the universe Y. Therefore, $\neg F_{1}(R)=B-F_{1}(R)=B^{*}-F\left(R \cup R^{\prime}\right)$.

By the facts above, $\mathcal{B} \leq_{T} X, F(R)=F_{1}(R)$ is c.e. relative to X, and there is no infinite $W \subseteq \neg F_{1}(R)$ such that W is c.e. relative to X. Applying Lemma 3.3 to the structure \mathcal{B}, we obtain an isomorphism G from \mathcal{B} onto a copy \mathcal{C} such that $X \leq_{T} \mathcal{C} \leq_{T} G \oplus \mathcal{B} \leq_{T} X$.

Claim 1. The relation $G\left(F_{1}(R)\right)$ is c.e. relative to \mathcal{C}.
This is clear from the fact that $F_{1}(R)$ is c.e. relative to X, and G and X are both computable in \mathcal{C}.

Claim 2. There is no infinite subset $W \subseteq C$ such that W is c.e. relative to \mathcal{C} and $W \subseteq \neg G\left(F_{1}(R)\right)=G\left(\neg F_{1}(R)\right)$.

If there were such a set W, then $G^{-1}(W)$ would be an infinite subset of $\neg F_{1}(R)$, and it would be c.e. relative to X, since G^{-1} is computable relative to X. This is a contradiction.

Therefore, $G \circ F_{1}: \mathcal{A} \cong \mathcal{C}$, and from Claims 1 and 2 , it follows that $G\left(F_{1}(R)\right)$ is simple relative to \mathcal{C}.

4 Immune and Simple Relations on Computable Structures

Here are our results on Problem 1 and Problem 2. They involve extra decidability conditions, which imply that both \mathcal{A} and R are computable.

Theorem 4.1. Let \mathcal{A} be an infinite (computable) L-structure, and let R be a unary (computable) infinite and co-infinite relation on A. Assume that we have an effective procedure for deciding whether

$$
\left(\mathcal{A}_{A}, R\right) \models(\exists x \in \mathbf{R}) \theta(\vec{c}, x),
$$

where $\theta(\vec{c}, x)$ is a finitary existential formula of L with finitely many parameters. If there is no infinite set D such that $D \subseteq \neg R$ and D is definable in \mathcal{A} by a computable Σ_{1} formula of L with finitely many parameters, then there is an isomorphism F from \mathcal{A} onto a computable copy \mathcal{B} such that the relation $\neg F(R)$ is immune.

Proof: We use the finite injury priority method. Let $B=\left\{b_{0}, b_{1}, b_{2}, \ldots\right\}$ be an infinite computable set of constants for the universe of \mathcal{B}. The construction has the following requirements:
$P_{n}^{0}: a_{n} \in \operatorname{dom}(F) ;$
$P_{n}^{1}: b_{n} \in \operatorname{ran}(F)$;
$N_{e}: W_{e}$ is infinite $\Rightarrow F(R) \cap W_{e} \neq \emptyset$.
The construction proceeds in stages. At stage $s+1$, we inherit from stage s a finite chain $\left(p_{0}, \ldots, p_{k_{s}}\right)$ of partial $1-1$ functions from B to A, so that $\cup_{i \leq k_{s}} p_{i}$ is also a partial 1-1 function from B to A. Each p_{i} has worked on the $i^{t h}$ requirement according to stage s information. Thus, for instance, if no action on behalf of requirement R_{i} was taken or preserved at stage s, then $p_{i}=\emptyset$.

We also have a finite set δ_{s} of sentences in L_{B} such that $\delta_{s} \subseteq D(\mathcal{B})$. When information changes at stage $s+1$, we may back up and change some p_{m}, dropping the later ones. However, we must retain δ_{s} to ensure that the copy \mathcal{B} we construct is computable. As we shall see below, our construction ensures that every sentence of δ_{s+1} is determined by the partial function $\cup_{i \leq k_{s+1}} p_{i}$.

A requirement of the form P_{n}^{0} or P_{n}^{1} needs attention at stage $s+1$ for the obvious reason. The way in which we satisfy such a requirement is equally obvious. If a requirement of the form N_{e} is the $m^{t h}$ requirement in our list, then it needs attention at stage $s+1$ if the following are true:
i) $p_{m}(R) \cap W_{e, s+1}=\emptyset$;
ii) $b \in W_{e, s+1}-W_{e, s}$, and for all $n<m, b \notin \operatorname{ran}\left(p_{n}\right)$.

Assume that N_{e} is the highest priority requirement which needs attention and that b is the least element satisfying $i i)$. Then the strategy for satisfying N_{e} at stage $s+1$ is to put b into $F(R)$, if possible. Assume $\theta_{s}\left(\vec{d}, b, \vec{b}_{1}\right)={ }_{\text {def }} M \backslash \delta_{s}$, where the image of \vec{d} is fixed for the sake of higher priority requirements, and $\cup_{i \leq k_{s}} p_{i}$ maps \vec{d}, b, \vec{b}_{1} to $\vec{c}, a, \overrightarrow{a_{1}}$, where $a \notin R$. We effectively check whether there is $\bar{a}^{\prime} \in R$ satisfying $\exists \vec{u}\left(\theta_{s}(\vec{c}, x, \vec{u}) \wedge(x \notin \vec{c}) \wedge(x \notin \vec{u}) \wedge(\vec{c} \cap \vec{u}=\emptyset)\right)$. If that is the case, then we change p_{m} to take care of the requirement in such a way that b and \vec{b}_{1} are in the domain of p_{m}. We let the chain at the end of stage $s+1$ be $\left(p_{0}, p_{1}, \ldots, p_{m}\right)$. Otherwise, we add the pair (b, a) to the partial function p_{m}, and we let the chain at the end of stage $s+1$ be $\left(p_{0}, p_{1}, \ldots, p_{k_{s}}\right)$.

In defining δ_{s+1}, we consider the first atomic sentence $\psi(\vec{b})$ from L_{B} so that neither ψ nor $\neg \psi$ is included in δ_{s}. If $\vec{b} \subseteq \operatorname{dom}\left(\cup_{i \leq k_{s+1}} p_{i}\right)$ and \vec{b} is mapped to \vec{a}, then $\psi(\vec{b})$ is added if $\mathcal{A} \models \psi(\vec{a})$, and $\neg \psi(\vec{b})$ is added if $\mathcal{A} \models \neg \psi(\vec{a})$. On the other hand, if $\vec{b} \nsubseteq \operatorname{dom}\left(\cup_{i \leq k_{s+1}} p_{i}\right)$, then $\delta_{s+1}=\delta_{s}$.

If N_{e} is the least requirement which is never satisfied, then we obtain a single tuple of parameters \vec{c} so that there are an infinite sequence of steps s, each with a different corresponding b and $a \notin R$, and a formula $\exists \vec{u} \theta_{s}(\vec{c}, x, \vec{u})$ satisfied by a and not by any element of R. (Note that it is important to protect p_{m} from lower priority requirements even when p_{m} fails to satisfy N_{e}. This guarantees that the element a is different for each stage s.) Then the disjunction of these formulas $\exists \vec{u} \theta_{s}(\vec{c}, x, \vec{u})$ is a computable Σ_{1} formula with parameters \vec{c} defining an infinite subset of $\neg R$, contradicting the assumption.

Theorem 4.2. Let \mathcal{A} be an infinite (computable) L-structure, and let R be a unary (computable) infinite and co-infinite relation on A. Assume that we have an effective procedure for deciding whether

$$
\left(\mathcal{A}_{A}, R\right) \models(\exists x \in \mathbf{R}) \varphi(\vec{c}, x),
$$

where φ is a finitary existential formula in $L \cup\{\mathbf{R}\}$ with finitely many parameters and with positive occurrences of \mathbf{R}. If there is no infinite $D \subseteq \neg R$ definable by such a formula, then there is an isomorphism F from \mathcal{A} onto a computable copy \mathcal{B} such that $F(R)$ is simple.

The proof is similar to that of the previous theorem.
We now present some examples on simplicity and immunity.
Example 1. Let $\mathcal{A}=\left(\omega,<_{\omega}\right)$ and let R be the set of all even numbers. First, we show that no infinite subset of the odds is definable by a computable Σ_{1} formula (in the language $\{<, \mathbf{R}\}$) with finitely many parameters \vec{c} and positive occurrences of \mathbf{R}. Otherwise, we can assume, without loss of generality, that a disjunct of such a formula is a finitary formula $\exists \vec{u} \psi(\vec{c}, x, \vec{u})$ so that the following are true:
i) the formula $\psi(\vec{c}, x, \vec{u})$ is a conjunct which gives the complete ordering of \vec{c}, x, \vec{u} and expresses that certain elements of \vec{c}, \vec{u} are in R;
ii) there is a tuple \vec{d}, and an odd number a bigger than every element in \vec{c} so that $\left(\mathcal{A}_{A}, R\right) \models \psi(\vec{c}, a, \vec{d})$.

Define a^{\prime} and a tuple $\overrightarrow{d^{\prime}}$ as follows:
i) $a^{\prime}=a+1$;
ii) if $d_{i} \in \vec{d}$ and d_{i} is less than a, set $d_{i}^{\prime}={ }_{\text {def }} d_{i}$;
iii) if $d_{i} \in \vec{d}$ and d_{i} is greater than a, set $d_{i}^{\prime}={ }_{d e f} d_{i}+2$.

Clearly, $\left(\mathcal{A}_{A}, R\right) \models \psi\left(\vec{c}, a^{\prime}, \overrightarrow{d^{\prime}}\right)$. Hence $\left(\mathcal{A}_{A}, R\right) \models \exists \vec{u} \psi\left(\vec{c}, a^{\prime}, \vec{u}\right)$, but a^{\prime} is even, which is a contradiction.

Next, the structure (\mathcal{A}, R) satisfies the decidability condition of Theorem 4.2. Therefore, there is a computable copy \mathcal{B} of \mathcal{A} and $F: \mathcal{A} \cong \mathcal{B}$ so that $F(R)$ is simple. (In [5], it was shown that for any c.e. set C, there is a computable copy \mathcal{B} and $F: \mathcal{A} \cong \mathcal{B}$ so that $F(R)$ is a c.e. set and $F(R) \equiv_{T} F \equiv_{T} C$.)

Example 2. Let \mathcal{A} be an equivalence structure with infinitely many equivalence classes, all of size 2 . Let R be a relation containing exactly one element from each class so that the pair (\mathcal{A}, R) satisfies the decidability condition of Theorem 4.1. No infinite subset of $\neg R$ is definable by a computable Σ_{1} formula (in the language $\{E\}$) with only finitely many parameters: if an element a and its equivalent are both outside the parameters, then any formula satisfied by a is also satisfied by its equivalent element. Therefore, there is a computable copy \mathcal{B} and $F: \mathcal{A} \cong \mathcal{B}$ so that $\neg F(R)$ is immune.

However, $\neg R$ is definable by a computable Σ_{1} formula $\varphi(x)$ in $\{E, \mathbf{R}\}$ with only positive occurrences of \mathbf{R}. Namely, $\varphi(x)$ is the following finitary formula: $\exists y(\mathbf{R}(y) \wedge y E x \wedge y \neq x)$. Therefore, in any copy \mathcal{B} in which $F(R)$ is c.e. relative to $\mathcal{B}, F(R)$ is, in fact, computable relative to \mathcal{B}.

Example 3. Let \mathcal{A} be a computable equivalence structure as in Example 2. Let R be a relation such that the following are satisfied:
i) there are infinitely many equivalence classes from which R contains exactly one element;
ii) there are no equivalence classes from which R contains both elements;
iii) there are infinitely many equivalence classes from which R contains neither element;
iv) the pair (\mathcal{A}, R) satisfies the decidability condition of Theorem 4.1.

No infinite subset of $\neg R$ is definable by a computable Σ_{1} formula (in the language $\{E\}$) with only finitely many parameters, so there is a computable copy \mathcal{B} and $F: \mathcal{A} \cong \mathcal{B}$ in which $\neg F(R)$ is immune.

Furthermore, there is a computable copy \mathcal{B} in which the image of R is c.e., but not computable. However, the formula $\varphi(x)$ in the language $\{E, \mathbf{R}\}$ given in Example 2 defines an infinite subset of $\neg R$. Consequently, there is no $F: \mathcal{A} \cong \mathcal{B}$ such that $F(R)$ is simple relative to \mathcal{B}.

Example 4. Let \mathcal{A} be the structure $\left(\mathcal{Q},<_{Q}\right)$, and let R be the set of all rationals less than π. There is no computable formula (in the language $\{<\}$) with finitely many parameters which defines $\neg R$. However, the formula " $5<x$ " does define an infinite subset of $\neg R$. Consequently, there is no $F: \mathcal{A} \cong \mathcal{B}$ in which $\neg F(R)$ is immune relative to \mathcal{B}.

5 Open Problems

We now recall some fundamental definitions from computability theory (for more information, see [12] and [10]). Let $X \subseteq \omega$. The set X is cohesive if it is infinite and for any infinite c.e. set W, only one of $W, \neg W$ has infinite intersection with X. A set is maximal if it is c.e. and its complement is cohesive. The set X is $h h$ immune if there is no computable function $f: \omega \rightarrow \omega$ such that $\left(W_{f(n)}\right)_{n \in \omega}$ is a sequence of pairwise disjoint finite c.e. sets, each having nonempty intersection with X. A set is $h h$-simple if it is c.e. and its complement is $h h$-immune.

Problem 5 Under what syntactic conditions is there an isomorphism F from \mathcal{A} onto a computable copy such that $\neg F(R)$ is cohesive?

Problem 6 Under what syntactic conditions is there an isomorphism F from \mathcal{A} onto a computable copy such that $F(R)$ is maximal?

Problem 7 Under what syntactic conditions is there an isomorphism F from \mathcal{A} onto a computable copy such that $\neg F(R)$ is hh-immune?

Problem 8 Under what syntactic conditions is there an isomorphism F from \mathcal{A} onto a computable copy such that $F(R)$ is hh-simple?

As in Definition 1, we may define what it means for a new relation on the domain B of a countable structure \mathcal{B} to be cohesive relative to \mathcal{B}, maximal relative to \mathcal{B}, hh-immune relative to \mathcal{B}, or hh-simple relative to \mathcal{B}. Thus, we have the following relative analogues of the above problems.

Problem 9 Under what syntactic conditions is there an isomorphism F from \mathcal{A} onto a copy \mathcal{B} such that $\neg F(R)$ is cohesive relative to \mathcal{B} ?

Problem 10 Under what syntactic conditions is there an isomorphism F from \mathcal{A} onto a copy \mathcal{B} such that $F(R)$ is maximal relative to \mathcal{B} ?

Problem 11 Under what syntactic conditions is there an isomorphism F from \mathcal{A} onto a copy \mathcal{B} such that $F(R)$ is hh-immune relative to \mathcal{B} ?

Problem 12 Under what syntactic conditions is there an isomorphism F from \mathcal{A} onto a copy \mathcal{B} such that $F(R)$ is hh-simple relative to \mathcal{B} ?

There are natural definability conditions necessary for the image of $\neg R$ to be cohesive. There should be no computable Σ_{1} formula $\varphi(\vec{c}, x)$, in the language L, either defining $\neg R$, or true of infinitely many elements of $\neg R$ without being true of almost all of them.

There are also natural definability conditions necessary for the image of $\neg R$ to be maximal. They are the same as above except that the Σ_{1} formula is in the language $L \cup\{\mathbf{R}\}$ with only positive occurrences of \mathbf{R}.

It turns out, as shown by the following examples, that these conditions are not sufficient.

Example 5. Let \mathcal{A} be an \aleph_{0}-dimensional vector space over a finite field, say over a field with 3 elements. Let R be the domain of its subspace of infinite dimension and infinite co-dimension. There is a computable copy of \mathcal{A} in which the image of R is immune, since the only sets definable in \mathcal{A} are finite and cofinite, and there is a copy also satisfying the effectiveness condition of Theorem 4.1.

For $a \notin R$, the formula $\varphi(a, x) \equiv[(\exists y)[x=a+y]]$ defines an infinite subset of $\neg R$ that is c.e. (relative to \mathcal{B}) if the image of R is. It follows that the image of R can never be relatively simple, or relatively maximal.

We show that the image of $\neg R$ cannot be made relatively cohesive. In any copy \mathcal{B}, we consider the set W of elements a such that a is first (in the ordering of ω) in the subspace generated by a, excluding 0 . The set W is computable relative to \mathcal{B}, and both W and $\neg W$ have infinite intersections with the image of R.

Example 6. Let \mathcal{A} be an equivalence structure as in Examples 2 and 3. Let R consist of infinitely many equivalence classes, such that $\neg R$ also consists of infinitely many equivalence classes. There is a computable copy of \mathcal{A} in which the image of $\neg R$ is immune. In fact, we can make the image of R simple. As in the previous example, the image of $\neg R$ cannot be made relatively cohesive, hence the image of R cannot be made relatively maximal. In a copy \mathcal{B} of \mathcal{A}, let W be the set of elements that are first in their equivalence classes. Then W is computable relative to \mathcal{B}, and both W and $\neg W$ have infinite intersections with the image of $\neg R$.

Example 7. Let \mathcal{A} and R be as in Example 2. We show that the image of $\neg R$ cannot be made relatively cohesive. For any copy \mathcal{B} of \mathcal{A}, the set W of elements that are first in their equivalence classes is computable in \mathcal{B}. If the image of $\neg R$ were cohesive, then it would be almost equal to W or to $\neg W$, so it would be computable in \mathcal{B}.

References

[1] C. J. Ash, J. F. Knight, and J. B. Remmel, Quasi-simple relations in copies of a given recursive structure, Annals of Pure and Applied Logic 86 (1997), 203-218.
[2] C. Ash, J. Knight, M. Manasse and T. Slaman, Generic copies of countable structures, Annals of Pure and Applied Logic 42 (1989), 195-205.
[3] J. Chisholm, Effective model theory vs. recursive model theory, Journal of Symbolic Logic 55 (1990), 1168-1191.
[4] V. S. Harizanov, Effectively nowhere simple relations on computable structures, in: M. M. Arslanov and S. Lempp, eds., Recursion Theory and Complexity (de Gruyter, Berlin, 1999), 59-70.
[5] V. S. Harizanov, Some effects of Ash-Nerode and other decidability conditions on degree spectra, Annals of Pure and Applied Logic 55 (1991), 51-65.
[6] G. Hird, Recursive properties of intervals of recursive linear orders, in: J. N. Crossley, J. B. Remmel, R. A. Shore, and M. E. Sweedler, eds., Logical Methods (Birkhäuser, Boston, 1993), 422-437.
[7] G. R. Hird, Recursive properties of relations on models, Annals of Pure and Applied Logic 63 (1993), 241-269.
[8] J. F. Knight, Degrees coded in jumps of orderings, Journal of Symbolic Logic 51 (1986), 1034-1042.
[9] G. Metakides and A. Nerode, Recursively enumerable vector spaces, Annals of Mathematical Logic 11 (1977), 147-171.
[10] A. Nerode and J. B. Remmel, A survey of lattices of r.e. substructures, in: A. Nerode and R. A. Shore, eds., Recursion Theory, Proceedings of Symposia in Pure Mathematics of the American Mathematical Society 42 (American Mathematical Society, Providence, 1985), 323-375.
[11] J. B. Remmel, Recursive isomorphism types of recursive Boolean algebras, Journal for Symbolic Logic 46 (1981), 572-594.
[12] R. I. Soare, Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Computably Generated Sets, Springer-Verlag, Berlin, 1987.

[^0]: *The first three authors gratefully acknowledge support of the NSF Binational Grant DMS0075899.

