Real Computable Manifolds

Wesley Calvert Murray State University

Russell Miller, Queens College & Graduate Center – CUNY

January 8, 2009

AMS Special Session on Orderings in Logic and Topology

AMS-MAA 2009 Joint Meetings Washington, DC

Computability on \mathbb{N}

Turing computability: an idealized computer accepts finite binary strings (or finite tuples from \mathbb{N}) as inputs, runs according to a finite program, and may halt within finitely many steps, outputting another binary string or tuple from \mathbb{N} .

So Turing programs naturally compute partial functions $\mathbb{N}^j \to \mathbb{N}^k$ or $\mathbb{N}^* \to \mathbb{N}^*$. (*Partial*: the domain may be a proper subset of \mathbb{N}^j or \mathbb{N}^* .)

Halting Problem: does a given Turing program with a given input ever halt? No Turing machine can give you the correct answer in all cases.

A subset of \mathbb{N}^* is *computable* iff its characteristic function is computable.

Computability on \mathbb{R}

Blum-Shub-Smale computability (or real computability): a *BSS machine* accepts finite tuples from \mathbb{R} as inputs, runs according to a finite program, which has finitely many reals as parameters and can perform operations and comparisons on reals. It may halt within finitely many steps, outputting another tuple from \mathbb{R} .

So BSS programs naturally compute partial functions $\mathbb{R}^* \to \mathbb{R}^*$, and can be indexed by elements of \mathbb{R}^* .

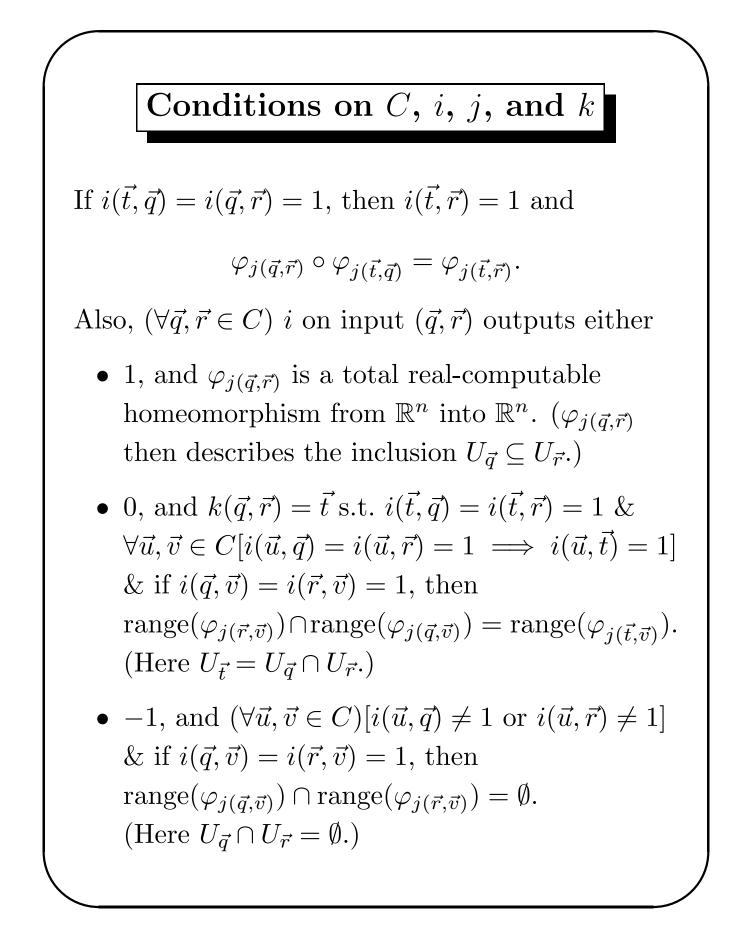
Halting Problem: does a given BSS program with a given input ever halt? Again, no BSS machine can give you the correct answer in all cases.

Real Computable Manifolds

Defn.: A real-computable n-manifold M consists of (1) a computable subset $C \subseteq \mathbb{R}^*$; and (2) real-computable i, j, k, the inclusion functions, satisfying the conditions on the next slide. Interpretation:

- Each $\vec{r} \in C$ is a chart $U_{\vec{r}}$ in M, with domain \mathbb{R}^n ;
- $i(\vec{q}, \vec{r}) = 1$ iff $U_{\vec{q}} \subseteq U_{\vec{r}}$, and then $j(\vec{q}, \vec{r})$ is an index for the (computable!) inclusion map;
- If $i(\vec{q}, \vec{r}) = 0$, then $k(\vec{q}, \vec{r}) \in C^*$ and $\sqcup_{\vec{t} \in k(\vec{q}, \vec{r})} U_{\vec{t}} = U_{\vec{q}} \cap U_{\vec{r}}.$

• Else
$$i(\vec{q}, \vec{r}) = -1$$
, and $U_{\vec{q}} \cap U_{\vec{r}} = \emptyset$.



Loops and Homotopy

Defn.: A loop in M is given by finitely many continuous functions $f_m : [t_{m-1}, t_m] \to \mathbb{R}^n$, where $0 = t_0 < \cdots < t_l = 1$, along with $\vec{r}_1, \ldots, \vec{r}_l \in C$. We think of f mapping [0, 1] into M by mapping each $[t_{m-1}, t_m]$ into $U_{\vec{r}_m}$, with the obvious condition on the end points. If all f_m are computable, then the loop is computable.

Fact: Every loop in M is homotopic to a computable loop.

(One could define *computable homotopy*, but for now we just use homotopy.)

Noncomputable Nullhomotopy

Build a computable 2-manifold M with charts indexed by $\mathbb{N} \times \mathbb{R}^*$:

- $U_{0,\vec{r}}$ and $U_{1,\vec{r}}$ form an annulus.
- Define a computable loop $f_{\vec{r}}$ around this annulus.
- For s > 1, if $\varphi_{\vec{r}}(f_{\vec{r}})$ halts in exactly (s 1)steps and says that $f_{\vec{r}}$ is *not* nullhomotopic, then $U_{s,\vec{r}}$ fills in the hole in the annulus.
- If no halt occurs at step (s-1), then $U_{s,\vec{r}}$ is disjoint from all other charts.

So no $\varphi_{\vec{r}}$ correctly decides nullhomotopy of $f_{\vec{r}}$.

A simpler manifold

The above M has no countable cover. But even in S^1 , there is no real-computable ψ which accepts \vec{r} as input and satisfies:

if $\varphi_{\vec{r}}$ is a loop in S^1 , then

$$\psi(\vec{r}) = \begin{cases} 1, & \text{if } \varphi_{\vec{r}} \text{ nullhomotopic} \\ 0, & \text{if not.} \end{cases}$$

Proof: Use the Recursion Thm. for BSS-machines to produce $\varphi_{\vec{r}} : [0,1] \to S^1$ s.t. $\varphi_{\vec{r}}(0) = \varphi_{\vec{r}}(1) = 1$ and

$$\varphi_{\vec{r}} \left[\frac{1}{2^s}, \frac{1}{2^{s+1}} \right] = \begin{cases} S^1, & \text{if } \psi(\vec{r}) = 1 \text{ in} \\ & \text{exactly } s \text{ steps} \\ 1, & \text{if not.} \end{cases}$$

General Theorems

The procedure above works for any computable M containing a computable loop which is not nullhomotopic.

Thm. (Calvert-M.): For any real-computable manifold M, TFAE:

- 1. There exists a real-computable ψ such that (\forall computable loops $\varphi_{\vec{r}}$ in M) $\psi(\vec{r})$ decides nullhomotopy of $\varphi_{\vec{r}}$,
- 2. All computable loops in M are nullhomotopic.

3. M is simply connected.

Thm. (Calvert-M.): Simple-connectedness is not decidable. That is, there is no real-computable ψ such that whenever \vec{r} is the index of a computable manifold M, $\psi(\vec{r})$ decides whether M is simply connected.