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Computability on N

Turing computability: an idealized computer
accepts finite binary strings (or finite tuples from
N) as inputs, runs according to a finite program,
and may halt within finitely many steps,
outputting another binary string or tuple from N.

So Turing programs naturally compute partial
functions Nj → Nk or N∗ → N∗. (Partial : the
domain may be a proper subset of Nj or N∗.)

Halting Problem: does a given Turing program
with a given input ever halt? No Turing machine
can give you the correct answer in all cases.

A subset of N∗ is computable iff its characteristic
function is computable.
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Computability on R

Blum-Shub-Smale computability (or real
computability): a BSS machine accepts finite
tuples from R as inputs, runs according to a finite
program, which has finitely many reals as
parameters and can perform operations and
comparisons on reals. It may halt within finitely
many steps, outputting another tuple from R.

So BSS programs naturally compute partial
functions R∗ → R∗, and can be indexed by
elements of R∗.

Halting Problem: does a given BSS program
with a given input ever halt? Again, no BSS
machine can give you the correct answer in all
cases.
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Real Computable Manifolds

Defn.: A real-computable n-manifold M consists
of (1) a computable subset C ⊆ R∗; and (2)
real-computable i, j, k, the inclusion functions,
satisfying the conditions on the next slide.
Interpretation:

• Each !r ∈ C is a chart U!r in M , with domain
Rn;

• i(!q,!r) = 1 iff U!q ⊆ U!r, and then j(!q,!r) is an
index for the (computable!) inclusion map;

• If i(!q,!r) = 0, then k(!q,!r) ∈ C∗ and
$!t∈k(!q,!r)U!t = U!q ∩ U!r.

• Else i(!q,!r) = −1, and U!q ∩ U!r = ∅.
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Conditions on C, i, j, and k

If i(!t, !q) = i(!q,!r) = 1, then i(!t,!r) = 1 and

ϕj(!q,!r) ◦ ϕj(!t,!q) = ϕj(!t,!r).

Also, (∀!q,!r ∈ C) i on input (!q,!r) outputs either

• 1, and ϕj(!q,!r) is a total real-computable
homeomorphism from Rn into Rn. (ϕj(!q,!r)

then describes the inclusion U!q ⊆ U!r.)

• 0, and k(!q,!r) = !t s.t. i(!t, !q) = i(!t,!r) = 1 &
∀!u,!v ∈ C[i(!u, !q) = i(!u,!r) = 1 =⇒ i(!u,!t) = 1]
& if i(!q,!v) = i(!r,!v) = 1, then
range(ϕj(!r,!v))∩range(ϕj(!q,!v)) = range(ϕj(!t,!v)).
(Here U!t = U!q ∩ U!r.)

• −1, and (∀!u,!v ∈ C)[i(!u, !q) += 1 or i(!u,!r) += 1]
& if i(!q,!v) = i(!r,!v) = 1, then
range(ϕj(!q,!v)) ∩ range(ϕj(!r,!v)) = ∅.
(Here U!q ∩ U!r = ∅.)
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Loops and Homotopy

Defn.: A loop in M is given by finitely many
continuous functions fm : [tm−1, tm] → Rn, where
0 = t0 < · · · < tl = 1, along with !r1, . . . ,!rl ∈ C.
We think of f mapping [0, 1] into M by mapping
each [tm−1, tm] into U!rm , with the obvious
condition on the end points. If all fm are
computable, then the loop is computable.

Fact: Every loop in M is homotopic to a
computable loop.

(One could define computable homotopy, but for
now we just use homotopy.)
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Noncomputable Nullhomotopy

Build a computable 2-manifold M with charts
indexed by N × R∗:

• U0,!r and U1,!r form an annulus.

• Define a computable loop f!r around this
annulus.

• For s > 1, if ϕ!r(f!r) halts in exactly (s − 1)
steps and says that f!r is not nullhomotopic,
then Us,!r fills in the hole in the annulus.

• If no halt occurs at step (s − 1), then Us,!r is
disjoint from all other charts.

So no ϕ!r correctly decides nullhomotopy of f!r.
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A simpler manifold

The above M has no countable cover. But even in
S1, there is no real-computable ψ which accepts !r

as input and satisfies:
if ϕ!r is a loop in S1, then

ψ(!r) =





1, if ϕ!r nullhomotopic

0, if not.

Proof: Use the Recursion Thm. for BSS-machines
to produce ϕ!r : [0, 1] → S1 s.t. ϕ!r(0) = ϕ!r(1) = 1
and

ϕ!r!
[

1
2s

,
1

2s+1

]
=






S1, if ψ(!r) = 1 in

exactly s steps

1, if not.
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General Theorems

The procedure above works for any computable
M containing a computable loop which is not
nullhomotopic.
Thm. (Calvert-M.): For any real-computable
manifold M , TFAE:

1. There exists a real-computable ψ such that
(∀ computable loops ϕ!r in M) ψ(!r) decides
nullhomotopy of ϕ!r,

2. All computable loops in M are nullhomotopic.

3. M is simply connected.

Thm. (Calvert-M.): Simple-connectedness is not
decidable. That is, there is no real-computable ψ

such that whenever !r is the index of a computable
manifold M , ψ(!r) decides whether M is simply
connected.
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