Left ordered and discretely ordered groups

Peter A. Linnell

Virginia Tech, Blacksburg

Thursday, January 8

Joint with Rhemtulla and Rolfsen

http://www.math.vt.edu/people/plinnell/ and arXiv

A group G is left-ordered means that it has a total order \leq such that for all $g, x, y \in G$ with $x \leq y$, then $gx \leq gy$.

Definition

A group G is bi-ordered means that it has a total order \leq such that for all $g, x, y \in G$ with $x \leq y$, then $gx \leq gy$ and $xg \leq yg$.

Remark

Often the term "ordered" is used for "bi-ordered".

Theorem (Well Known)

If G is left orderable, then $\mathbb{C}G$ satisfies the zero divisor conjecture: if $0 \neq \alpha, \beta \in \mathbb{C}G$, then $\alpha\beta \neq 0$.

Theorem (Linnell 91)

Let $\ell^2(G)$ denote the Hilbert space with basis the elements of G. If G is left orderable, $0 \neq \alpha \in \mathbb{C}G$ and $0 \neq \beta \in \ell^2(G)$, then $\alpha\beta \neq 0$.

Applications to L^2 -cohomology of left-ordered groups.

Conjecture (Atiyah conjecture)

Let $\mathcal{U}(G)$ denote the ring of unbounded operators affiliated to the group von Neumann algebra of G. If G is torsion-free, then there exists a division ring D such that $\mathbb{C}G \subseteq D \subseteq \mathcal{U}(G)$.

Conjecture

If G is left orderable, then $\mathbb{C}G$ can be embedded in a division ring.

Let (G, \leq) be a left-ordered group. The order \leq is *discrete* if there exists a least positive $g \in G$. Otherwise the order \leq is said to be dense.

Remark

A least positive element in a left-ordered group is necessarily unique.

Remark

Let (G, \leq) be a left-ordered group with \leq dense. Then

- If $h, k \in G$ and h < k, then there exists $x \in G$ with h < x < k.
- If $G \neq 1$ is countable, then G is order isomorphic to \mathbb{Q} .

Example

 \mathbb{Q} is left orderable, but has *no* discrete left order.

Let (G, \leq) be a left-ordered group and let $H \leq G$. Then H is a *convex* subgroup if whenever $h, k \in H$ and $x \in G$ with h < x < k, then $x \in H$.

Remark

Let (G, \leq) be a discrete left-ordered group and let $g \in G$ be its least element. Then $\langle g \rangle$ is a convex subgroup of G. Thus if $\langle g \rangle \lhd G$, then $G/\langle g \rangle$ is left-orderable.

Results with Rhemtulla and Rolfsen: bi-orders

Theorem

Let G be a group with a discrete bi-order. If z is the minimal positive element, then $z \in Z(G)$ (the center of G). Also $G/\langle z \rangle$ is bi-orderable (because $\langle z \rangle$ is convex).

Corollary

Thus nonabelian free groups have no discrete bi-order.

Theorem

Let G be a bi-orderable group and let $1 \neq z \in Z(G)$. If $Z(G)/\langle z \rangle$ is torsion free (i.e. z is isolated in Z(G)), then G has a discrete bi-order.

Example

If G is a bi-orderable group, then $\mathbb{Z} \times G$ has a discrete bi-order (with (1, 1) as minimal positive element).

Theorem

Nontrivial finitely generated residually torsion-free nilpotent groups have discrete left orders.

Remark

These left orders can be chosen to be of "Conrad type" (lexicographic).

Examples

Example

The following groups have discrete left orders.

- Nontrivial free groups (not necessarily finitely generated).
- Surface groups, except projective plane.
- Pure Braid groups.
- Nontrivial right-angled Coxeter groups.

Proof.

These groups are all residually torsion-free nilpotent, except the Klein bottle. Result follows if we assume the group is finitely generated and is not the Klein bottle.

Remark

With the exception of the torus, the surface groups above have trivial center, so do not have discrete bi-orders.

Remark

Examples so far have all been locally indicable: G is locally indicable means if $1 \neq H \leq G$ and H is finitely generated, then H/H' if infinite (H' is the commutator subgroup).

Example

Artin Braid groups B_n $(n \ge 2)$ have discrete left orders. Some of these left orders are dense when restricted to B'_n (Clay-Rolfsen). B'_n is finitely generated and perfect for $n \ge 5$ (so B_n is not locally indicable for $n \ge 5$).

The next example involve groups which Bergman used to exhibit left-orderable groups that are not locally indicable.

3

Example

Let *H* be a finitely generated subgroup of $SL_2(\mathbb{R})$ with $-I \in H$ (where *I* is the identity matrix), and suppose *H* contains a diagonal matrix other than $\pm I$. Then there is a group *G* with infinite cyclic center *Z*, $G/Z \cong H$, and *G* has a discrete left order. Furthermore in many cases G = G'.

Conjecture

A group with infinitely many left orders has a dense order.

æ

12 / 15

Let G be a left-orderable group and let \mathcal{O}_G denote the set of left orders on G. For $g \in G$, set $U_g = \{ < \in \mathcal{O}(G) \mid 1 < g \}$. Then the space of left orders on G is $\mathcal{O}(G)$ with topology given by the subbase $\{U_g \mid 1 \neq g \in G\}$.

Can use this to prove

Theorem (Linnell, Navas)

 $|\mathcal{O}(G)|$ is either finite or uncountable.

Definition (Derived subset)

Let X be a Hausdorff topological space. Then X' is the subset obtained from X by removing all isolated points.

Remark

- X' is the set of limit points of X
- X' is a closed subset of X
- X' may still contain isolated points

Definition (Derived series)

Let X be a Hausdorff topological space. For each ordinal α , define $X^{(\alpha)}$ by transfinite induction.

•
$$X^{(0)} = X$$
.
• $X^{(\alpha+1)} = (X^{(\alpha)})'$.
• $X^{(\alpha)} = \bigcap_{\lambda < \alpha} X^{(\lambda)}$ if α is a limit ordinal.

Use

Proposition

Let X be a nonempty countable compact Hausdorff space. Then there exists an ordinal α such that $X^{(\alpha)}$ is finite and nonempty.