
Computability-Theoretic Properties of

Partial Injections, Trees, and Nested Equivalences

by Leah Marshall

B.A. in Mathematics and Statistics, June 2004, Northwestern University

M.A. in Mathematics, May 2010, The George Washington University

A Dissertation submitted to

The Faculty of

The Columbian College of Arts and Sciences

of The George Washington University

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

August 31, 2015

Dissertation directed by

Valentina Harizanov

Professor of Mathematics

The Columbian College of Arts and Sciences of The George Washington University certifies that

Leah Marshall has passed the Final Examination for the degree of Doctor of Philosophy as of May

12th, 2015. This is the final and approved form of the dissertation.

Computability-Theoretic Properties of

Partial Injections, Trees, and Nested Equivalences

Leah Marshall

Dissertation Research Committee:

Valentina Harizanov, Professor of Mathematics, Dissertation Director

Russell Miller, Professor of Mathematics, CUNY Graduate Center, Committee Member

Jozef Przytycki, Professor of Mathematics, Committee Member

ii

c�Copyright 2015 Leah Marshall
All Rights Reserved

iii

Acknowledgments

Above all, I would like to thank my advisor, Valentina Harizanov for her guidance, support, and

never-ending faith in me and my abilities. I would also like to thank Russell Miller for the motivation

behind examining nested equivalence structures, for his help reading countless drafts, and for his

constant encouragement and frequent trips to DC. I would like to thank Jennifer Chubb Reimann,

who came up with the idea to examine a correspondence between nested equivalence structures and

trees in the first place.

I would like to thank all my friends and family, especially Jason, Chester, and my parents, for

their continued love and support through the years. Also to my fellow classmates and officemates

along the way, especially Tyler, Joe, Erblin, Hakim, Trang, and Iva — they always offered a patient

ear and a helping hand in the office when I could not myself make it in.

My greatest appreciation goes out to my dissertation committee, including Jozef Przytycki,

Michele Friend, E. Arthur (Robbie) Robinson, and Murli Gupta. And additionally, to the George

Washington University’s Summer Program for Women in Mathematics; I wouldn’t have ended up

here without it.

This dissertation was supported in part by NSF grant DMS-1202328, which I gratefully acknowl-

edge for assistance with books and travel, both of which helped greatly in my research efforts.

The George Washington University Leah Marshall

Date of Defense May 12th, 2015

iv

Abstract

Computability-Theoretic Properties of

Partial Injections, Trees, and Nested Equivalences

We examine computable isomorphisms and other related computability-theoretic properties of

three types of countable structures – partial injection structures, full finite height trees, and nested

equivalence structures.

We generalize the notion of injection structures – consisting of a set of natural numbers and an

injective (1-1) function – and define partial injection structures by considering only partial functions.

We make significant progress towards completely classifying computable categoricity for partial in-

jection structures by giving two sufficient conditions for relative computable categoricity. We fur-

thermore explore the other conditions on partial injection structures, and show non-computable cate-

goricity. We do the same for ∆0
2-categoricity, giving sufficient conditions for relative ∆0

2-categoricity,

and exploring many of the other conditions to show non-∆0
2-categoricity. Finally, we show that all

partial computable injection structures must be relatively ∆0
3-categorical.

We next explore finitely nested equivalence structures and show that they can be represented

as trees. Furthermore, we show that every tree under certain conditions, specifically being full and

of finite height ≥ 2, can be represented as a nested equivalence structure. Moreover, we do this in

an algorithmic manner and build a functor between the two types of structures. We show that this

functor behaves nicely – it is full, faithful, essentially onto, and computable. We then leverage the

ability to go between trees and nested equivalence structures, and transfer results between the two.

We provide previously unknown answers to questions related to computable categoricity and the

Turing degree spectra of nested equivalence structures.

v

Contents

Acknowledgments iv

Abstract v

Contents vi

List of Figures viii

List of Symbols ix

Chapter 1 Introduction 1

1.1 Computability . 1

1.2 Computable Structure Theory . 5

1.3 Category Theory . 9

Chapter 2 Computable Categoricity of Partial Injection Structures 12

2.1 Injection Structures and Partial Injection Structures 12

2.2 Classifying the Orbits . 13

2.3 Relatively Computably Categorical Partial Injection Structures 18

2.4 Non-Computably Categorical Partial Injection Structures 24

Chapter 3 Higher Levels of Categoricity and Index Sets of Partial Injection Struc-

tures 43

3.1 Relatively ∆0
2-Categorical Partial Injection Structures 43

3.2 Non-∆0
2-Categorical Partial Injection Structures . 54

3.3 ∆0
3-Categoricity of Partial Injection Structures . 66

3.4 Index Sets of Partial Computable Injection Structures 68

3.5 Future Research . 70

Chapter 4 Algorithmic Equivalence of Trees and Nested Equivalence Structures 72

vi

4.1 Nested Equivalence Structures . 72

4.2 Trees . 76

4.3 Basic Notions: Drawing a Tree from a Nested Equivalence Structure 80

4.4 Trees to Nested Equivalence Structures . 84

4.5 Nested Equivalence Structures to Trees . 99

4.6 Putting It All Together . 111

Chapter 5 Category-Theoretic Notions of Trees and Nested Equivalence Structures 113

5.1 The Categories: FFT and NEquiv . 114

5.2 Functor from FFT to NEquiv . 118

5.3 Computability of the Functor . 134

Chapter 6 Computability-Theoretic Properties of Nested Equivalence Structures

and Full Trees of Finite Height 142

6.1 Trees of Finite Height . 142

6.2 Computable Categoricity of Nested Equivalence Structures 144

6.3 Turing Degree Spectra of Nested Equivalence Structures 151

6.4 Future Research . 160

References 162

Index 166

vii

List of Figures

1.1 Functor Diagram . 10

2.1 Isomorphic Partial Injection Structures . 15

2.2 Example: Infinitely Many 2-Chains and 3-Chains for A 27

2.3 Example: Infinitely Many 2-Chains and 3-Chains for B 31

4.1 3-Nested Equivalence Structure Example - Step 1 . 82

4.2 3-Nested Equivalence Structure Example – Final . 83

4.3 Diagram for Tree to Nested Equivalence Structure 84

4.4 Diagram for Nested Equivalence Structure to Tree 99

5.1 Functor Diagram for FFT to NEquiv . 119

5.2 Construction for Proof that F is Full . 125

5.3 Diagram Showing Functor is Essentially Onto . 132

6.1 Construction for Proof that DgSpA(R) ⊆ DgSpTAN
(R̂) 155

6.2 Construction for Proof that DgSpA(R) ⊇ DgSpTAN
(R̂) 157

viii

List of Symbols

≺T Order relation on tree T

≤T Turing reducible

� Isomorphic

≡T Turing equivalent

�c Computably isomorphic

�d d-isomorphic

�∆n ∆0
n-isomorphic

⊕ Computable join

∅� Turing jump of the empty set; the Halting set

∅(n) The nth Turing jump of the empty set

0
� Turing degree of the jump of the empty set; Turing degree of the Halting set

0
(n) Turing degree of the nth jump of the empty set

a Turing degree of set A

a
� Turing degree of set A�

a
(n) Turing degree of set A(n)

[a]E Equivalence class of a under equivalence relation E

A Countable mathematical structure.

A� Turing jump of set A

ix

A(n) nth Turing jump of set A

(A,E) Equivalence structure with universe A and equivalence relation E

(A,E1, . . . , En) Nested equivalence structure with universeA and equivalence relations E1, . . . , En

(A, f) Injection or partial injection structure with universe A and 1-1 function f

ATA Nested equivalence structure built out of tree T using universe A ⊆ N

ATN Nested equivalence structure built out of tree T using universe N

A Partial characteristic function of set A

R Partial characteristic function of relation R

CA Equivalence classes of nested equivalence structure A, without repetition

card(A) Cardinality of set A

CatSpec(A) Categoricity spectrum of structure A

χA Characteristic function of set A

χR Characteristic function of relation R

d Turing degree

D0
1 Difference of two c.e. sets

D0
n Difference of two Σ0

n sets

deg(A) Turing degree of set A

deg(A) Turing degree of structure A

∆0
1 Level 1 in the arithmetical hierarchy, Σ0

1 ∩Π0
1

∆0
n Level n in the arithmetical hierarchy, Σ0

n ∩Π0
n

∆A
n Level n in the relativized arithmetical hierarchy, Σ0

n ∩Π0
n relative to set A

DgSp(A) Turing degree spectrum of structure A

DgSpA(R) Turing degree spectrum of relation R on structure A

dom(f) Domain of function f

x

FFT Category of full, finite height trees

ft Function f computed with timebound t

f(x) ↓ Function f halts on input x

f(x) ↑ Function f with input x does not halt, or computes forever

HomC(A,B) Set of all homomorphisms in category C between objects A and B

ht(T) Height of tree T

K Halting set

levelT (x) The level of node x on tree T

NEquiv Category of finitely nested equivalence structures

Of (a) Orbit of a under f

ϕ0,ϕ1,ϕ2, . . . Algorithmic list of all partial computable functions

Π0
1 Level 1 in the arithmetical hierarchy, ∀x

�
·
�

Π0
n Level n in the arithmetical hierarchy, ∀x1∃x2∀x3 · · ·xn

�
·
�

ΠA
n Level n in the relativized arithmetical hierarchy, ΠA

n relative to set A

PInj Set of indices of partial injection structures

p(T , x, i) ith level predecessor of node x on tree T

Px Set of all predecessors of a node x on a given tree

range(f) Range of function f

Σ0
1 Level 1 in the arithmetical hierarchy, ∃x

�
·
�

Σ0
n Level n in the arithmetical hierarchy, ∃x1∀x2∃x3 · · ·xn

�
·
�

ΣA
n Level n in the relativized arithmetical hierarchy, Σ0

n relative to set A

TAN Tree built out of nested equivalence structure A using universe N

TAT Tree built out of nested equivalence structure A using universe T ⊆ N

T = (T,≺) Tree with universe T and partial order ≺

We Domain of ϕe; the eth c.e. set

xi

Chapter 1

Introduction

Computability theory formalizes the notions of what computers can do. Informally, we say that a

mathematical object is computable if there is some computer program or effective algorithm which

computes it. Although mathematicians have been studying algorithms for centuries, the formal

study of computability theory is a relatively new one, most commonly thought to have begun in

1936 with a paper from Alan Turing. There are various models of computability theory which fully

define and standardize these notions of computability, including: recursive functions due to Gödel

and Kleene, Turing computability due to Alan Turing, and unlimited register machine computability

due to Sturgis and Shepherdson in the 1950s. Any of these notions are equivalent. In fact, Church-

Turing’s thesis states that any intuitively computable function – that is, any function for which we

can describe in words some finite algorithm – is formally computable by any of these above notions

of computability.

This dissertation focuses on computable structures, especially on the computability-theoretic

categoricity of partial injection structures and nested equivalence structures. We further develop

the notions of computability and effective categoricity in the first two sections of this chapter. In our

exploration of nested equivalence structures in later chapters, we rely heavily on ideas from category

theory, therefore the final section of this chapter discusses the basic notions of category theory.

1.1 Computability

We take the natural numbers, N = {0, 1, 2, 3, . . .}, as the universe of infinite structures in com-

putability theory. As is standard, throughout this dissertation when we say, for example, “x > 1”,

1

we really mean “x ∈ N and x > 1”. Additionally, when we say “infinite” we mean “countably infi-

nite”. Following conventions of the field, we also often use ω to refer to the set of natural numbers.

We now give a basic overview of the notions of computability. For a more thorough discussion of

computability theory, see [42] and [14].

The study of computability theory often begins with the Turing machine, which can be thought

of as the mathematical idealization of a computer. It was devised in 1936 by Alan Turing as

a theoretical device which consists of “ticker tape”-style registers and a tapehead that can move

among the registers and can read, write, and erase what’s in each register. The Turing machine

was never meant to be an actual device, but simply a thought experiment to mimic the steps that

a human could do with a pencil and paper (read, write, erase, focus his attention on a new part

of the paper). Nevertheless, people have since built actual functioning Turing machine devices and

brought this thought experiment into a reality. Furthermore, Turing proved that such a device could

indeed carry out any mathematical computation that can be described as an algorithm, even the

complex and lengthy computations that are possible with modern day computers.

A Turing machine program consists of a finite list of instructions for the various registers (read,

write, erase, move). Since each program is a finite list of instructions, and each instruction can be

one of only finitely many types, there are countably many Turing machine programs. Furthermore,

we can encode each of these instructions, and hence each of these programs, so that we can list out

all Turing machine programs in an effective (that is, algorithmic) manner: P0, P1, P2, . . .

Following standard conventions of how to input natural numbers into the Turing machine and

how to read the output from a Turing machine, each program with n inputs can be thought of as

computing some n-ary function. Therefore, we define an n-ary function on the natural numbers,

f : Nn → N, to be computable if we can write a Turing machine program that computes it.

More specifically, if this Turing machine program takes as input any x1, . . . , xn ∈ N and outputs

f(x1, . . . , xn) in some finite number of steps, then the function is said to be total computable,

or simply computable. If the algorithm is allowed to possibly compute forever (that is, take

an infinite number of steps), then f is said to be partial computable. If the function f does

indeed compute forever on some input (x1, . . . , xn), then we write f(x1, . . . , xn) ↑ and say that

(x1, . . . , xn) /∈ dom(f). Otherwise, we write f(x1, . . . , xn) ↓, or (x1, . . . , xn) ∈ dom(f). Clearly all

total computable functions are also partial computable, though the reverse is not necessarily true.

Since we can list out Turing machine programs in an algorithmic manner, we can list out all their

corresponding n-ary functions by letting ϕ
(n)
e represent the n-ary function that results from running

Turing machine program Pe with n inputs. In this way we can effectively list all partial computable

2

n-ary functions: ϕ(n)
0 , ϕ(n)

1 , ϕ(n)
2 , . . .

We can now define computability for sets and relations in the following way. Let A be a set of

natural numbers, let R be some n-ary relation on N, and define the characteristic functions of A

and R, χA and χR respectively, as follows:

χA(x) =

1 if x ∈ A

0 if x /∈ A

, χR(x1, . . . , xn) =

1 if R(x1, . . . , xn) is true

0 if R(x1, . . . , xn) is not true

Then we say that A is a computable set if its characteristic function is computable, and we

say that R is a computable relation if its characteristic function is computable.

Similarly, we can define the partial characteristic functions of a set A or a relation R as follows:

A(x) =

1 if x ∈ A

↑ if x /∈ A

, R(x1, . . . , xn) =

1 if R(x1, . . . , xn) is true

↑ if R(x1, . . . , xn) is not true

We say that A or R is computably enumerable, abbreviated by c.e., if its partial characteristic

function is computable. Although being c.e. does not necessarily imply being computable, if we

place a timebound, t, on the computation of our algorithm, then our algorithm will always halt in

a finite number of steps, namely t, and hence will yield a computable function, set, or relation. We

denote a function, set, or relation computed under such a timebound as ft, At, or Rt.

We can extend the notion of the Turing machine to that of an oracle Turing machine, which,

in addition to performing the tasks of a Turing machine, can perform the task of consulting an

oracle. For our purposes we define an oracle to be any set, relation, or function of which we

can ask questions about membership, truth value, or output value during the computation of our

Turing machine program. This gives rise to the notion of relative computability; given two sets A

and B we say that B is A-computable (equivalently, B is computable relative to A, or B is

Turing reducible to A, or B ≤T A) if there exists a Turing machine which, if given information

about membership in A, can compute B. This definition extends in the natural way to relative

computability of functions and relations. We can also extend the notions of partial computability

and of encoding Turing machine programs to relative partial computability and encoding oracle

Turing machine programs, resulting in an effective list of all A-partially computable functions: ϕA
0 ,

ϕA
1 , ϕ

A
2 , . . . , called a Gödel numbering. Note that there are other types of reducibility studied in

computability theory. For instance, many-one reducibility, or m-reducibility, is a particular stronger

3

form of Turing reducibility.

We can also define two sets A and B to be Turing equivalent, written A ≡T B, if A ≤T B and

B ≤T A. It is easy to check, then, that Turing equivalence is indeed an equivalence relation and

that ≤T is a partial order (under “≡T ”) on subsets of N. Note that it is not, however, a total order,

as there do exist sets A and B such that A �≤T B and B �≤T A. Intuitively, Turing reducibility and

Turing equivalence give us an idea about the computability-theoretic difficulty of certain problems

– whether one problem is less difficult than another (≤T), equally as difficult as another (≡T), or

the two are incomparable. Because of this notion of varying levels of “difficulty” of problems, we

use the term Turing degree to refer to equivalence classes under Turing equivalence. That is, for

a set A we define the following:

Turing degree of A
def
= deg(A) = a = {B ⊆ N : B ≡T A}

Note that we can think of a relation as a set of tuples under which the relation holds, and we can

identify a function with its graph. The Turing degree of a relation or a function can then be defined

using the above definition. Problems (sets, functions, or relations) of intuitively the same level of

“difficulty” will therefore have the same Turing degree. We say that a ≤ b for Turing degrees

a = deg(A) and b = deg(B) iff A ≤T B. It is easy to check that ≤ forms a partial order on Turing

degrees. We use the term Turing degree hierarchy to refer to the interplay and relationships of

these different levels of difficulty as defined by their Turing degrees, and it can be easily shown that

there are uncountably many Turing degrees in the Turing degree hierarchy.

Given two sets A and B, we define the computable join of A and B, denoted A⊕B as:

A⊕B
def
= {2a : a ∈ A} ∪ {2b+ 1 : b ∈ B}

It is easy to show that A ≤T A⊕B and B ≤T A⊕B. Furthermore, deg(A⊕B) is in fact the unique

least upper bound of the Turing degrees of A and B. We often denote this least upper bound by

deg(A⊕B) = deg(A)∪ deg(B), or simply a∪ b. Since this least upper bound exists for any Turing

degrees a and b, the Turing degrees therefore form an upper semilattice. We should note that the

Turing degrees do not form a lower semilattice, as there do exist Turing degrees with no greatest

lower bound — so-called “exact pairs”.

We consider now which partial computable functions halt, and which do not, given an oracle A.

4

We define A� = the jump (or Turing jump) of a set A as follows.

A
� = {e : ϕA

e (e) ↓}

We denote the Turing degree of A� by deg(A�) = a
�. In general we have that A <T A�, and hence

a < a
�; this better explains the given terminology, as each time we apply the jump operator to a

set, we “jump up” a level of difficulty in the Turing degree hierarchy. We can take multiple jumps

of a set, by letting A�� = (A�)�, A��� = (A��)�, and in the general case A(n) = (A(n−1))�. If we take

A to be the empty set, or indeed any computable set, we get the set ∅� = K = the halting set

= {e : ϕe(e) ↓}. Because any computable set can be computed without the use of an oracle, any

computable set is ≤T than any other set. This concept gives rise to the convention that deg(∅) = 0.

Therefore deg(∅�) = 0
�, . . ., deg(∅��) = 0

��, and in general deg(∅(n)) = 0
(n).

The following defines the arithmetical hierarchy. We say that a set of natural numbers X

is Σ0
n if X can be expressed as: X = {x : ∃y1∀y2 · · · Qyn R(x, y1, . . . , yn)} and X is Π0

n if X

can be expressed as: X = {x : ∀y1∃y2 · · · Qyn R(x, y1, . . . , yn)} for some computable relation, R,

where “∀” and “∃” continue to alternate and Q = ∃ or ∀ depending on whether n is even or odd.

We say that a set X is ∆0
n if X ∈ Σ0

n ∩ Π0
n. We say that a set X is D0

n if X is the difference of

two Σ0
n sets, or, equivalently if X = the intersection of a Σ0

n set and a Π0
n set. We say that X

is Σ0
n-complete (similarly Π0

n-complete or D0
n-complete), if X is Σ0

n (similarly Π0
n or D0

n) and

for any Σ0
n (similarly Π0

n or D0
n) set Y , Y is m-reducible to X. Equivalently, there exists a total

computable function f such that a ∈ Y ⇐⇒ f(a) ∈ X.

Post’s theorem gives us a connection between the arithmetical hierarchy and the Turing degree

hierarchy. Specifically, it states that ∅(n) is Σ0
n-complete (hence ∅(n) is Π0

n-complete) for n > 0, and

A is ∆0
n+1 iff A is ∅(n)-computable. This gives us that ∆0

1 sets are exactly computable sets, and Σ0
1

sets are exactly c.e. sets. Note, we can relativize the arithmetical hierarchy and Post’s theorem to

discuss sets which are Σ0
n, Π

0
n, and ∆0

n relative to an oracle A, or simply ΣA
n , Π

A
n , and ∆A

n .

1.2 Computable Structure Theory

The notion of a structure is quite familiar throughout many areas of mathematics. For instance,

linear orderings, trees, graphs, groups, fields, and vector spaces to name a few. Computable structure

theory is a branch of mathematics which seeks to investigate the algorithmic nature of these various

mathematical structures. For a full and more thorough discussion on the subject, see [3], [18], [24],

5

[25], [27], and/or [34].

We generally study only countable structures – ones in which the universe or domain is a

countable set and the constants, relations, and functions which define such a structure are also

countable – for computable languages. A computable language can be thought of as a tuple of

computably presented sets of variable, constant, relation, function, and logical symbols. For the

purposes of this dissertation, the languages we consider are always finite. For notation, we tend

towards using a script letter to refer to the structure, and the corresponding latin letter to refer

to the universe of the structure. For instance, in a linear ordering, �, over some set A ⊆ N, we

let A = (A,�) represent the corresponding linearly ordered structure. Loosely defined, then, an

isomorphism from a structure A to a structure B is a 1-1 and onto function f : A → B such that

the associated constants, relations, and functions are preserved. Two structures A and B are said

to be isomorphic, denoted A � B, if such an isomorphism exists, in which case we sometimes refer

to B as an isomorphic copy or simply just a copy of A.

Computable structure theory examines the computability-theoretic properties of these mathe-

matical structures. We define a computable structure to be a structure in which the universe is

computable and the associated relations and functions or operations which define the structure are

computable. For example, in the linearly ordered structure given above, A = (A,�) is computable

iff A is a computable set and � is a computable relation. In much of the literature on the subject,

when given a (not necessarily computable) structure A, we call a structure B a computable copy

of A, or equivalently a computable presentation of A, iff B � A and B is computable. We can

take these definitions one step further and for a (possibly noncomputable structure) A, we can talk

about the Turing degree of the structure. For a countable structure A with finitely many relations,

functions, and constants (which is what we consider in this dissertation), we can define the Turing

degree of a structure A to be the least upper bound of the Turing degrees of the relations and

functions that define the structure. That is, if A = (A,R1, . . . , Rn, f1, . . . , fm, c1, . . . , cp) then we

can define:

deg(A)
def
= deg(A)⊕ deg(R1)⊕ · · ·⊕ deg(Rn)⊕ deg(f1)⊕ · · ·⊕ deg(fm)

Note that the finitely many constants in our definition of A do not affect the Turing degree of the

structure.

One of the fundamental questions that computable structure theory examines is that of com-

putable isomorphisms. Although isomorphisms preserve the underlying structure of these math-

6

ematical entities, they do not in fact preserve the computability-theoretic properties. Therefore,

from a computability perspective, two isomorphic structures may not in fact be the “same”. The

situation does not improve even if we require that the structures themselves be computable. That

is, it is relatively easy to construct structures A and B which are both computable, and in which

A � B, but some property (for example, a set or a relation) computable in A is not computable

in B. This gives rise to the concept of computable isomorphism. For two isomorphic structures, A

and B, we say that A and B are computably isomorphic, sometimes denoted A �c B, iff there

is an isomorphism h : A → B which is itself a computable function. Note that the existence of

such an h is not guaranteed. It is easy to see, though, that if such a computable isomorphism does

exist, then any computable property in A will also be computable in B and vice versa, since this

isomorphism guarantees an algorithm with which to transfer properties from one structure to the

other. We sometimes divide structures up into isomorphism classes, where we think of isomorphism

as an equivalence relation on the given type of structures and an isomorphism type as simply a

class under the “isomorphism” equivalence relation on that structure. We can equally well divide

structures up into computable isomorphism classes, where we take “computable isomorphism” as an

equivalence relation on all the computable copies of A. That is, we take all the computable copies

of some structure A, and examine which of those computable copies are computably isomorphic

to each other. A computable isomorphism type is then simply an equivalence class under the

equivalence relation of “computable isomorphism”. The computable dimension of a computable

structure is defined to be the number of computable isomorphism classes of that structure.

To fully examine the subject of computable isomorphisms, one essential question asked is: given

a computable structure, when will all of its computability-theoretic properties always transfer to

its computable copies? Or in other words, when will all computable copies of that structure be

isomorphic via a computable isomorphism? To this end, we say that a computable structure A is

computably categorical iff every computable structure isomorphic to A is computably isomorphic

to A. Note that a structure is computably categorical iff its computable dimension is 1. Another

related notion is that of relative computable categoricity, where we extend the concept of computable

categoricity, even when our countable structures, A and B, are not themselves computable. A

(possibly non-computable) structure A is said to be relatively computably categorical if for

every isomorphic copy B, there is an isomorphism h : A → B such that h is computable in A ⊕ B,

or equivalently that is computable in deg(A) ∪ deg(B).

We can extend the notions of computable isomorphisms, computable dimension, computable

categoricity, and relative computable categoricity to higher levels in the arithmetical hierarchy and

7

the Turing degree hierarchy. We say that structures A and B are ∆0
n-isomorphic, sometimes

denoted A �∆n B iff there is an isomorphism h : A → B which is itself a ∆0
n-function. Given a

Turing degree, d, we say that structures A and B are d-isomorphic, sometimes denoted A �d B

iff there is an isomorphism h : A → B which is itself a d-computable function. The d-computable

dimension of a computable structure is then defined to be the number of d-computable isomorphism

classes of that structure. We say that a structure is ∆0
n-categorical (respectively d-categorical)

iff every computable structure isomorphic to A is ∆0
n-isomorphic (respectively d-isomorphic) to

A. Note that for d = 0
(n), standard convention is that 0(n)-computably categorical structures are

generally referred to as ∆0
n+1-categorical. We say that a computable structure A is relatively ∆0

n-

categorical if for every isomorphic copy B, there is an isomorphism h : A → B such that h is ∆B
n ,

or equivalently, h is computable in deg(B)(n−1).

One final concept which ties all of these notions together is to examine the entire spectrum or

range of Turing degrees for which we have some type of computability-theoretic categoricity. For

any computable structure, A, the categoricity spectrum of A is defined as follows:

CatSpec(A) = {d : A is d-computably categorical}

Now, for a slightly different approach to examining isomorphisms on countable structures, we use

the isomorphisms as a way to see how “difficult” the structure itself is. We can look at the collection

of all Turing degrees of isomorphic copies of our structure. If we consider only isomorphic copies

whose domain is ω, we can then define the Turing degree spectrum of a countable structure A

as follows:

DgSp(A) = {deg(B) : B � A}

Furthermore, we can also discuss the effect that various isomorphisms have on a given relation on

our structure. The Turing degree spectrum of relation R on A is defined as:

DgSpA(R) = {deg
�
f(R)

�
: B � A via f and B is computable}

If for some Turing degree d, we have that d ∈ DgSpA(R) (in other words, that d = deg
�
f(R)

�
for

some isomorphism from A to a computable copy of A), then we say that d is realized in DgSpA(R)

via f .

Up until this point, we have mostly discussed ways of examining isomorphisms on a particular

structure, A. We wish to also consider isomorphisms on arbitrary structures of a certain type,

8

however. Roughly speaking, the isomorphism problem is the question of: can we determine, or how

difficult is it to determine whether two arbitrary structures are isomorphic? For a given class, C ,

of computable structures (say computable linear orderings, computable graphs, computable groups,

etc), we begin by fixing some enumeration of structures in C . That is, we index the structures in

some manner so that for each e the structure Ae is well-defined with universe N, and such that our

enumeration contains all structures in the class. We can now more formally state the isomorphism

problem for C as: what is the Turing degree of the following set?

{�i, j� : Ai,Aj ∈ C and Ai � Aj}

For many classes of structures, this has historically been a difficult problem, and one of great interest

in the field of computable structure theory.

1.3 Category Theory

The study of category theory seeks to abstract the notions of functions and systems of functions on

various structures, objects, and other mathematical entities. It is a relatively new field of study, gen-

erally agreed to have begun in 1945 with a paper by Samuel Eilenberg and Saunders Mac Lane. We

give here only a very basic overview of category theory and the concepts needed in this dissertation.

For a more detailed examination of category theory, see [4] and [32].

We begin by defining a category to be a mathematical structure which consists of all of the

following:

• A class of objects which we represent with letters A, B, C, . . .

• A class of arrows (also called morphisms) between the objects represented with letters f ,

g, h, . . ., and denoted as f : A → B

• A binary operation on morphisms called composition represented by “◦” such that:

– If f : A → B and g : B → C, then g ◦ f : A → C

– Associativity holds for ◦ — (h ◦ g) ◦ f = h ◦ (g ◦ f)

– Identity holds for ◦ — there exists a morphism 1A : A → A such that for f : A → B,

f ◦ 1A = f = 1B ◦ f .

9

For a given morphism f : A → B, we call A the domain of the morphism f , and we call B the

codomain of the morphism f .

The simplest example of a category takes the objects to be sets, and the arrows to be functions

between the sets. Composition is then defined in the usual way and it is clear that all the necessary

properties of being a category are satisfied. While this simplistic example may drive our intuition

behind categories, a category is indeed anything that satisfies this particular definition. A slightly

less simplistic, but still quite straightforward, example of a category takes the objects to be all

partially ordered sets, and the morphisms to be all monotone functions on those sets. It is easy to

check that all the necessary properties of being a category are indeed satisfied.

When we define a category, we generally give it a name to refer to later – usually some short

word or abbreviation which we put in bold letters and which usually in some way alludes to the

pieces involved in the definition of that particular category. For instance, the two examples given

above are often denoted as the category Sets and the category Pos, respectively.

In the language of category theory, we define an isomorphism as an arrow which has an inverse.

Formally, in a category C, an arrow f : A → B is an isomorphism if there exists an arrow (we call

it f -1 since it is easily shown that if such a morphism exists, it is unique) such that f -1 ◦ f = 1A and

f ◦ f -1 = 1B . Naturally, in this case A and B are said to be isomorphic.

Just as categories deal with mappings between objects, functors examine mappings between

categories. A functor is a mapping of objects to objects and morphisms to morphisms such that

domains, codomains, identity, and composition are all preserved. Specifically, if C and D are

categories, then F : C → D is a functor iff F (f : A → B) = F (f) : F (A) → F (B), F (1A) = 1F (A),

and F (g ◦ f) = F (g) ◦ F (f).

C D = F (C)

F

A

B C

f

g

g ◦ f

1A

F (A)

F (B) F (C)

F (f)

F (g)

F (g ◦ f)

F (1A)

Figure 1.1: Diagram of functor F on categories C and D.

10

Since functors are themselves mappings, we can explore the concepts of functors being “1-1” and

“onto”, called faithful and full respectively. First, some notation. Given a category, C, and objects

A, B in that category, we let HomC(A,B) represent the set of all arrows in C from A to B. Given

a functor F from category C to category D we define the map FA,B as follows.

FA,B: HomC(A,B) −→ HomD

�
F (A), F (B)

�

f �−→ F (f)

The functor F is then said to be full if FA,B is onto for all objects A,B ∈ C, and F is said to

be faithful if FA,B is 1-1 for all objects A,B ∈ C. Just like a function being both 1-1 and onto

yields nice properties, so too does a functor being both full and faithful. Specifically, these are key

concepts in the notion of two categories being equivalent. Though there are several definitions of

what it means for two categories to be equivalent, we take the following as our definition. Categories

C and D are equivalent if there is a functor F : C → D such that F is full, faithful, and for every

object D ∈ D there is an object C ∈ C such that F (C) is isomorphic to D. This latter property is

sometimes referred to as F being “essentially onto”, or that categories C and D have functors which

are “almost inverses” of each other. It is thus called because given any object in D, there is always

a corresponding object in C to which we can apply our functor and get back an object “essentially”

the same as our original – one isomorphic to it.

Intuitively, equivalence of categories is the key concept in exploring similarities between two

categories. As one might expect to be the case based on the name, all category-theoretic properties

are preserved under equivalence of categories. For instance, initial objects, terminal objects, and

limits to name a few. These are beyond the scope of this dissertation, however, so we do not elaborate

on them here. What we do rely upon is the fact that once we have equivalence of categories, many

of the associated properties of the given structures we are examining will transfer over quite nicely.

11

Chapter 2

Computable Categoricity of Partial

Injection Structures

In this chapter, we wish to examine the computable categoricity of partial injection structures. In [7]

Cenzer, Harizanov, and Remmel studied computability-theoretic properties of injection structures

and their isomorphisms. In [6] Calvert, Cenzer, Harizanov, and Morozov researched computable

categoricity of equivalence structures. We build off the work of both by defining partial injection

structures, examining what the structures look like, and exploring the properties of computable

isomorphisms between them.

2.1 Injection Structures and Partial Injection Structures

An injection structure A = (A, f) consists of a set A and an injection (a 1-1 function) f : A → A.

We call an injection structure A = (A, f) a computable injection structure if A is a computable

set and f is a total computable function. In [7] Cenzer, Harizanov, and Remmel studied injection

structures and their isomorphisms extensively. Since the injection, f , is the sole distinguishing

characteristic in these structures, we wish to examine what happens to these partial computable

injection structures as we apply f to the elements of our set A. Given an injection structure

A = (A, f), with a ∈ A, we follow the notation in [7] and define the orbit of a under f to be:

Of (a) = {b ∈ A : ∃n ∈ N[fn(a) = b ∨ f
n(b) = a]}

12

Note that since we wish to follow the usual conventions and restrict our universe to the natural

numbers, we have symmetrized the above definition of an orbit accordingly.

Orbits may be finite or infinite in size. And furthermore, injection structures can be completely

classified up to isomorphism by the sizes and types of their orbits. From [7] we have the following

results on the computable categoricity of injection structures.

Theorem 2.1 (Cenzer, Harizanov, Remmel, [7]). Let A = (A, f) be a computable injection structure.

Then A is computably categorical iff A has finitely many infinite orbits.

Theorem 2.2 (Cenzer, Harizanov, Remmel, [7]). Let A = (A, f) be a computable injection structure.

Then A is computably categorical iff A is relatively computably categorical.

In [7] Cenzer, Harizanov, and Remmel also extended the notion of injection structures to examine

Σ0
1 and Π0

1 injection structures, A = (A, f), so defined when the universe A is a Σ0
1 or Π0

1 set

respectively. In these examinations the injection remained a total function. We now take this idea

further, and examine what happens when we leave the universe, A as-is, but change the injection f

to be only a partial function.

We define here a partial injection structure A = (A, f) to be a structure which consist of

a set A ⊆ N and a partial 1-1 function f : A → A. We think of a partial 1-1 function, or a

partial injection, as a function, f , where for any x, y ∈ N if f(x) ↓= f(y) then x = y, but it is not

necessarily true that dom(f) = A. For our purposes, we wish to focus on the case when A is infinite.

We call a partial injection structure A = (A, f) a partial computable injection structure if A

is a computable set and f is a partial computable function.

We now examine computability-theoretic properties of partial injection structures and their iso-

morphisms. We note first a slight abuse of notation in the following sections. We will call a partial

computable injection structureA computably categorical iff every partial computable injection struc-

ture isomorphic to A is computably isomorphic to A. Traditionally, the definition of computably

categorical requires that the structures themselves be computable, not just partial computable. How-

ever, we can use the techniques of Marker’s extensions ([33]) to yield a partial injection structure

which is indeed computable, and to which all the properties of the structure transfer as expected.

2.2 Classifying the Orbits

We first begin by exploring what happens to these partial computable injection structures, A =

(A, f), as we apply f to the elements of our set A. Given a partial injection structure A = (A, f),

13

with a ∈ A, we can define the orbit of an element a under f as we did above for injection structures.

This yields the following five different types of orbits, described below. Note that in our descrip-

tions we use ω to denote the natural numbers with their usual ordering, and we use ω∗ to denote

the reverse ordering of ω. Additionally, we use standard notation where S represents the successor

function.

• Cycles: These orbits are of the form Of (a) = {a, f(a), . . . , fk−1(a)} for some a such that

fk(a) = a. Note that in this case we have that both a ∈ dom(f) and a ∈ range(f). These

orbits “cycle back” on themselves at some finite point, and hence are of some finite size, k.

They look as follows.

•

a

•

f(a)

•

· · ·

•

fk−1(a)

fk(a) = a

• ω-orbits: These orbits go infinitely forward and hence are isomorphic to (ω, S). These orbits

are of the form Of (a) = {fn(a) : n ∈ N} for some a /∈ range(f). The orbits looks as follows.

•

a

•

f(a)

•

· · ·

•

fk(a)

· · ·

• Z-orbits: These orbits go infinitely forward and infinitely backwards, and are therefore iso-

morphic to (Z, S). Every element of the orbit is in both range(f) and dom(f). Each Z-orbit

looks as follows.

· · · •

a

•

f(a)

•

· · ·

· · ·

• ω∗
-orbits: These orbits go infinitely backwards and hence are isomorphic to (ω∗, S). The

orbits are of the form Of (a) = {b : ∃n(fn(b) = a)} for some a /∈ dom(f), that is for some a

such that f(a) ↑. These orbits look as follows.

· · · • • •

a

f(a) ↑

• Finite Chains: These orbits neither go infinitely forward, nor infinitely backward, nor do

they cycle back on themselves. These orbits are of some finite size, k, and are of the form

Of (a) = {a, f(a), . . . , fk−1(a)} for some a /∈ range(f) such that fk(a) /∈ dom(f), that is such

that fk(a) ↑. Each finite chain orbit looks as follows.

14

•

a

•

f(a)

•

. . .

•

fk−1(a)

fk(a) ↑

We note first that the ω∗-orbits and the finite chain orbits exist because in partial injection

structures, there may be elements in our universe A which are not in the domain of our function.

We note that this is not true for (total) injection structures, where the injection f is a total function.

Therefore, total injection structures can only have cycle orbits, ω-orbits, or Z-orbits. We also note

that ω-orbits, Z-orbits, and ω∗-orbits are the only orbits of infinite size, and that cycles and finite

chains are the only orbits of finite size. We will often call a finite cycle with k elements a k-cycle,

and a finite chain orbit with k elements a k-chain, to emphasize the sizes of the orbits.

Partial injection structures are distinguished from each other solely by their partial injection, f .

Partial injection structures can therefore be classified up to isomorphism by describing the number of

infinite orbits of each type (ω-orbit, Z-orbit, or ω∗-orbit), and the number of finite orbits of size k for

each type (cycles or finite chains) for each finite k. Formally, we define an isomorphism between

partial injection structures to be a 1-1 and onto function which preserves the injection. By this

we mean that if A = (A, f) and B = (B, g) are two partial injection structures, they are isomorphic

iff there exists a 1-1 and onto fucntion h : A → B such that h(f(a)) = g(h(a)). Or in other words,

the following diagram commutes.

•

a

•

f(a)

•

h(a)

•

g(h(a))=h(f(a))

f g

h

h

A B

Figure 2.1: Diagram of isomorphic partial injection structures, (A, f) � (B, g) via h.

We now take the opportunity to examine the complexity of the various orbits and other natural

properties of partial computable injection structures.

Lemma 2.3. Let A = (A, f) be a partial computable injection structure. Then we have the following

15

complexities in the arithmetical hierarchy:

1. dom(f) is a Σ0
1 set

2. range(f) is a Σ0
1 set

3. Of (a) is a Σ0
1 set

4. {a : Of (a) is infinite} is a Π0
2 set.

5. {a : Of (a) has type Z} is a Π0
2 set.

6. {a : Of (a) has type ω} is a D0
2 set.

7. {a : Of (a) has type ω∗} is a D0
2 set.

8. {a : Of (a) is a cycle} is a Σ0
1 set.

9. {a : Of (a) is a finite chain} is a Σ0
2 set.

10. {(k, a) : card
�
Of (a)

�
≥ k} is a Σ0

1 set.

Proof. The proof here is straightforward. We know that A is a computable set and f is a partial

computable function. Furthermore, we know that given a time bound s on f , fs is therefore a total

computable function. To prove each of the above statements, we note the following characterizations.

1. Domain of f :

a ∈ dom(f) ⇐⇒ f(a) ↓ ⇐⇒ ∃tft(a) ↓

Therefore dom(f) is a Σ0
1 set.

2. Range of f :

a ∈ range(f) ⇐⇒ ∃b∃tft(b) = a

Therefore, range(f) is a Σ0
1 set.

3. Orbits:

Of (a) = {b : ∃n∃t
�
f
n
t (b) = a ∨ f

n
t (a) = b

�
� �� �

Σ0
1

}

16

4. Infinite orbits:

a ∈ infinite orbit ⇐⇒ a goes infinitely forwards (and not a cycle)

∨ a goes infinitely backwards (and not a cycle)

⇐⇒
�
∀m∃s f

m
s (a) ↓ �= a

�
∨

�
∀k∃b∃t f

k
t (b) = a ∧ b �= a

�

⇐⇒ ∀m∀k∃b∃t∃s
�
f
m
s (a) ↓ �= a ∨

�
f
k
t (b) = a ∧ b �= a

��

This is a Π0
2 statement, hence {a : Of (a) is infinite} is a Π0

2 set.

5. Z-orbits:

a ∈ Z-orbit ⇐⇒ a goes infinitely forwards ∧ a goes infinitely backwards

⇐⇒
�
∀m∃s f

m
s (a) ↓ �= a

�
∧

�
∀k∃b∃t f

k
t (b) = a

�

⇐⇒ ∀m∀k∃b∃t∃s
�
f
m
s (a) ↓ �= a ∧ f

k
t (b) = a

�

This is a Π0
2 statement, hence {a : Of (a) has type Z} is a Π0

2 set.

6. ω-orbits:

a ∈ ω-orbit ⇐⇒ a goes infinitely forwards ∧ a does not go infinitely backwards

⇐⇒
�
∀k∃t f

k
t (a) ↓�= a

�
� �� �

Π0
2

∧
�
∃k∀b∀t f

k
t (b) �= a

�
� �� �

Σ0
2

Therefore {a : Of (a) has type ω} = Π0
2-set ∩ Σ0

2-set, and hence {a : Of (a) has type ω} is D0
2.

7. ω∗-orbits:

a ∈ ω
∗-orbit ⇐⇒ a does not go infinitely forwards ∧ a goes infinitely backwards

⇐⇒
�
∃k∀t f

k
t (a) ↑

�
� �� �

Σ0
2

∧
�
∀k∃b∃t f

k
t (b) = a

�
� �� �

Π0
2

Therefore {a : Of (a) has type ω∗} = Σ0
2-set ∩ Π0

2-set, and hence {a : Of (a) has type ω∗} is

D0
2.

17

8. Cycles:

a ∈ cycle ⇐⇒ at some point a cycles back on itself

⇐⇒ ∃k∃tf
k
t (a) = a

This is a Σ0
1 statement, hence {a : Of (a) is a cycle } is a Σ0

1 set.

9. Finite Chains:

a ∈ finite chain ⇐⇒ a does not go infinitely forwards ∧ a does not go infinitely backwards

⇐⇒
�
∃m∀s f

m
s (a) ↑

�
∧

�
∃k∀b∀t f

k
t (b) �= a

�

⇐⇒ ∃m∃k∀b∀t∀s
�
f
m
s (a) ↑ ∧ f

k
t (b) �= a

�

This is a Σ0
2 statement, hence {a : Of (a) is a finite chain } is a Σ0

2 set.

10. Minimum Cardinality:

card
�
Of (a)

�
≥ k ⇐⇒ ∃chain of length k which contains a

⇐⇒ ∃b∃t1 . . . ∃tk∃s

��
ft1(b) ↓�= b ∧ f

2
t2(b) ↓�= b ∧ . . . ∧ f

k
tk(b) ↓�= b

�
∧

�
b = a ∨ fs(b) = a ∨ . . . ∨ f

k
s (b) = a

��

This is a Σ0
1 statement, hence {(k, a) : card

�
Of (a)

�
≥ k} is a Σ0

1 set.

2.3 Relatively Computably Categorical Partial Injection Struc-

tures

We now examine relative computable categoricity of partial injection structures. We present two

different theorems, each establishing relative computable categoricity for partial computable injection

structures with certain types of orbits.

We first recall Theorem 2.1 and Theorem 2.2 from Cenzer, Harizanov, Remmel in [7]. Together,

these theorems give that any computable injection structure with finitely many infinite orbits is

relatively computably categorical. For injection structures, the infinite orbits can be only Z-orbits

18

or ω-orbits. We now extend this theorem for partial injection structures. Partial injection structures

have an additional type of infinite orbit, namely ω∗-orbits, which we will take into account here.

Additionally, partial injection structures also have finite chain orbits, which injection structures do

not. Our corresponding theorem for partial injection structures also requires finitely many of the

finite chain orbits.

Theorem 2.4. If A = (A, f) is a partial computable injection structure with finitely many infinite

orbits and finitely many finite chain orbits, then A is relatively computably categorical.

Proof. Note that the proof of this follows closely that of the forward direction of Theorem 2.1, given

in [7]. Let A = (A, f) be a partial computable injection structures with finitely many infinite orbits

and finitely many finite chain orbits as follows:

• m ω-orbits with representatives a1, . . . , am s.t. ai /∈ range(f)

• n ω∗-orbits with representatives b1, . . . , bn s.t. bi /∈ dom(f)

• l Z-orbits with representatives z1, . . . , zl s.t. Of (zi) �= Of (zj) for i �= j

• p finite chain-orbits with representatives c1, . . . , cp s.t. ci /∈ dom(f)

In [22] Goncharov proved that A is relatively computably categorical iff A has a formally c.e. Scott

family of formulas. Therefore, to proceed, we will come up with a formally c.e. Scott family for A.

Let �d = d0, . . . , dr be a sequence in A distinct from a1, . . . , am, from b1, . . . bn, from z1, . . . , zl,

and from c1, . . . , cp. Then ∀q ≤ r we have that either dq is part of a cycle, a finite chain, an ω-orbit,

an ω∗-orbit, or a Z-orbit. This corresponds to one of the following:

(1) ∃t fk
t (dq) = dq (for some fixed, minimal k > 0)

(2) ∃t fk
t (dq) ↓= ci (for some fixed k ≥ 0, i ∈ {1, . . . , p})

(3) ∃t fk
t (ai) = dq (for some fixed k ≥ 0, i ∈ {1, . . . ,m})

(4) ∃t fk
t (dq) = bi (for some fixed k ≥ 0, i ∈ {1, . . . , n})

(5) ∃t fk
t (dq) = zi (for some fixed k ≥ 0, i ∈ {1, . . . , l})

(6) ∃t fk
t (zi) = dq (for some fixed k > 0, i ∈ {1, . . . , l})

Note that in (1) if we have more than one element in our sequence �d which meets this condition for

the same value of k, then we have to specify whether they are in the same cycle or different cycles.

Therefore for dq, dQ in our sequence �d with q �= Q and q,Q ≤ r, if both dq and dQ satisfy the same

formula (1) with the same value of k then either:

19

(7) ∃t f
j
t (dq) ↓= dQ (for some fixed j < k)

(8) ∀j < k ∃t f
j
t (dq) ↓�= dQ

Note that each of the above statements, (1)-(8), are c.e. since f is partial computable, and in

each case we have added a time bound, t. This is obvious for (2)-(7). To see this more clearly

for (1) we can translate “k minimal” into simply adding the following to the end of our statement:

∃s(fs(dq) ↓�= dq ∧ f2
s (dq ↓�= dq) ∧ · · · ∧ fk−1

s (dq) ↓�= dq). And for (8) we can translate “∀j < k”

into replacing (8) with the following: ∃t(f0
t (dq) ↓�= dQ ∧ f1

t (dq) ↓�= dQ ∧ · · · ∧ f
k−1
t (dq) ↓�= dQ).

Therefore, each formula in our Scott family of formulas will look like some combination of (1)-(8)

with dq replaced with the variable xq, and dQ replaced with the variable xQ. It is easy to see that

each sequence �d in A will have a formula in this family – we simply take the appropriate combination

of (1)-(8).

Therefore, to complete the proof, we need only show that given two sequences, �d and �e, in A, if

they satisfy the same Scott formula, then there exists an automorphism, h, such that h(�d) = �e. We

let �d = d1, . . . , dr and �e = e1, . . . , er be two such sequences in A. We first define a partial function

h as follows:

h(x) =

x if x is in an infinite orbit or finite chain

x if x is in a cycle distinct from all d1, . . . , dr and e1, . . . , er

f j(eq) if x is in k-cycle and x = f j(dq) for some j < k

It is clear then that for x in an infinite orbit (ω-orbit, Z-orbit, or ω∗-orbit), in a finite chain, or in

a cycle distinct from all of d1, . . . , dr and e1, . . . , er, that h is the identity function, and therefore

is 1-1 and preserves these orbits. For x in one of the cycle orbits with some dq, it is easy to see

that the Scott formulas for �d and �e from (1) and from either (7) or (8), as appropriate, will ensure

that the orbits are preserved under h, and that h is 1-1. Finally, then, we must extend h from a

partial function to a total one to get our desired automorphism. We do so by defining h on inputs

from k-cycles with some eq, but with no dQ. That is, x for which x = f j(eq) for some j < k and

x �= fJ(dQ) for any J < k and Q ∈ {1, . . . , r}. To finish defining h, then, we simply send each of the

eq’s to one of the dQ’s, say, take the smallest q for which Of (eq) has not been mapped under h to the

smallest dQ for which Of (dQ) /∈ range(h). (Note: we know that there are indeed the same number

of such eq’s as dQ’s. If there are K-many eq’s in k-cycles without any dQ’s, then so, too must there

be K-many dQ’s in cycles without eq’s.) Then define h(f j(eq)) = f j(dQ). This extension of h is

20

therefore also 1-1 and preserves orbits (takes k-cycles to k-cycles), and it completes the extension

so that h is additionally now total and onto. Hence h as defined is the required automorphism.

At this point one might conjecture, then, that finite chain orbits in partial injection structures

behave much like infinite orbits do in injection structures, as they too have no guaranteed stage at

which the “endpoint” of an orbit is reached. In some sense, as with the previous theorem, this is

indeed true. However, finite chain orbits are not actually infinite orbits, and so they do indeed have

some finite size. In some sense therefore they also behave like finite cycle orbits. We see this with

the following theorem.

We note that for injection structures, Theorem 2.1, which is the corresponding theorem to the

above, gave the only type of computably categorical injection structures — those with finitely many

infinite orbits. The same is not true for partial injection structures, however. The finite chain orbits

can also, under certain conditions, behave like finite cycle orbits. We therefore obtain another type

of relatively computably categorical partial injection structure: one in which infinitely many finite

chain orbits are allowed under certain conditions.

Theorem 2.5. If A = (A, f) is a partial computable injection structure made up of only finite orbits

(no ω-orbits, no ω∗-orbits, and no Z-orbits), and furthermore, A has infinitely many finite chain

orbits of one size (call it �), finitely many finite chain orbits of size other than �, and finitely many

cycles of size ≥ �, then A is relatively computably categorical.

Proof. This proof follows closely that for Theorem 2.4. We proceed by building the Scott family.

Let A = (A, f) be a partial computable injection structures with no infinite orbits, infinitely

many finite chain orbits of size �, finitely many finite chain orbits of size �= �, and finitely many cycle

orbits of size ≥ � as follows:

• 0 ω-orbits

• 0 ω∗-orbits

• 0 Z-orbits

• infinitely many finite chain orbits of size �

• n finite chain-orbits of size �= � with representatives a1, . . . , an s.t. ai /∈ range(f)

• m finite cycle orbits of size ≥ � with representatives b1, . . . , bm

• any number of finite cycle orbits of size < �

21

We again use Goncharov’s result in [22] that A is relatively computably categorical iff A has a

formally c.e. Scott family. Therefore, to proceed, we will come up with a formally c.e. Scott family

for A.

Let �d = d0, . . . , dr be a sequence in A distinct from a1, . . . , an and from b1, . . . , bm. Then ∀q ≤ r

we have that either dq is part of a finite chain of size �, finite chain of size other than �, cycle of size

≥ �, or cycle of size < �. This corresponds to one of the following:

(1) ∃c1 . . . ∃c�∃t1 . . . ∃t�−1 such that all of the following:

• ∀i �= j ∈ {1, . . . , �} ci �= cj

• ∀i ∈ {1, . . . , �}∀j ∈ {1, . . . , n} ci �= aj

• ∀i ∈ {1, . . . , �}∀j ∈ {1, . . . ,m} ci �= bj

• dq = ci for some i ∈ {1, . . . , �}

• ft1(c1) = c2 ∧ ft2(c2) = c3 ∧ · · · ∧ ft�−1(c�−1) = c�

(2) ∃t fk
t (ai) = dq (for some fixed k ≥ 0, i ∈ {1, . . . , n})

(3) ∃t fk
t (dq) = bi (for some fixed minimal k ≥ �, i ∈ {1, . . . ,m})

(4) ∃t fk
t (dq) = dq (for some fixed minimal k < �)

Note that in (4) if we have more than one element in our sequence �d which meets this condition for

the same value of k, then we have to specify whether they are in the same cycle or different cycles.

Therefore for dq, dQ in our sequence �d with q �= Q and q,Q ≤ r, if both dq and dQ satisfy the same

formula (4) with the same value of k then either:

(5) ∃t f
j
t (dq) ↓= dQ (for some fixed j < k)

(6) ∀j < k ∃t f
j
t (dq) ↓�= dQ

Note that each of the above statements, (1)-(6), are c.e. since f is partial computable and in each

case we have added a time bound, t. Additionally, each “∀” in the above formulas is bounded

by some fixed number and can therefore be expanded to remove the “∀”s accordingly. We can

furthermore translate “k minimal” into simply adding the following to the end of our statement:

∃s1 · · · ∃sk−1

�
fs1(dq) ↓�= (∗) ∧ f2

s2(dq) ↓�= (∗) ∧ · · · ∧ fk−1
sk−1

(dq) ↓�= (∗)
�
, where (∗) represents bi or

dq as appropriate.

Therefore, each formula in our Scott family of formulas will look like some combination of (1)-(6)

with dq replaced with the variable xq, and dQ replaced with the variable xQ. It is easy to see that

22

each sequence �d in A will have a formula in this family – we simply take the appropriate combination

of (1)-(6).

Therefore, to complete the proof, we need only show that given two sequences, �d and �e, in A, if

they satisfy the same Scott formula, then there exists an automorphism, h, such that h(�d) = �e. We

let �d = d1, . . . , dr and �e = e1, . . . , er be two such sequences in A. We first define a partial function

h as follows:

h(x) =

x if x is in finite chain orbit size �= �

x if x is in cycle orbit size ≥ �

x if x is in �-chain distinct from d1, . . . , dr, e1, . . . , er

f j(eq) if x is in �-chain and x = f j(dq) for some j < �

y s.t. f j(y) = eq if x is in �-chain and f j(x) = dq for some j < �, j > 0

x if x is in a k-cycle (k < �) distinct from d1, . . . , dr, e1, . . . , er

f j(eq) if x is in a k-cycle (k < �) and x = f j(dq) for some j < k

It is clear then that for x in a finite chain orbit of size �= �, in a cycle of size ≥ �, in an �-chain

distinct from all of d1, . . . , dr and e1, . . . , er, or in a cycle of size < � distinct from all of d1, . . . , dr

and e1, . . . , er, that h is the identity function, and therefore is 1-1 and preserves these orbits. For

x in one of the �-chains or in a cycle of size < � that contains one of d1, . . . , dr it is easy to see

that the Scott formulas for �d and �e from (1), (4) and from either (5) or (6), as appropriate, will

ensure that the orbits are preserved under h, and that h is 1-1. Finally, then, we must extend h

from a partial function to a total one to get our desired automorphism. We do so by defining h on

inputs in �-chains and “<� ”-cycles with some eq, but with no dQ. For x in such “<� ”-cycles with

x = f j(eq) for some j < k < �, we extend h in a similar way as we did in Theorem 2.4 — that is,

h(f j(eq)) = f j(dQ) for the next smallest q and Q with dQ not yet in range(h). For x in �-chains, we

extend h by again sending the entire chain containing eq to the entire chain containing dQ (the chain

with the smallest q for eq not yet mapped under h to the chain with the smallest Q for dQ not yet

in range(h)), ensuring that we map the beginning of eq’s �-chain to the beginning of dQ’s �-chain,

regardless of whether eq and dQ are the same distance from the beginning of their respective chains.

This extension of h is therefore 1-1 and also preserves orbits (takes k-cycles to k-cycles and �-chains

to �-chains, ensuring the respective parts of each chain are mapped accordingly). This completes the

extension of h, so it is now additionally total and onto, hence h defines the required automorphism.

23

Since we know that relative computable categoricity implies computable categoricity, the follow-

ing corollary is immediate.

Corollary 2.6. If A = (N, f) is a partial computable injection structure satisfying either of the

following, then A is computably categorical.

1. A has finitely many infinite orbits and finitely many finite chain orbit; or

2. A has no infinite orbits, infinitely many finite chain orbits of one size (call it �), finitely many

finite chain orbits of size other than �, and finitely many cycles of size ≥ �.

We now have two classes of partial injection structures which are computably categorical. The

natural question, of course, is then: are these the only kinds of computably categorical partial

injection structures? We can continue on to examine other types of partial injection structures and

whether or not they are computably categorical. We do so in the following section.

2.4 Non-Computably Categorical Partial Injection Structures

We now wish to examine types of partial injection structures which are not computably categorical.

Specifically, we wish to examine what happens for partial injection structures which are not the ones

as in Theorem 2.4 and Theorem 2.5. We will construct counter-examples for most aspects of the

other cases.

Firstly, of course, we must determine what the other cases are. We have given conditions for

relative computable categoricity, and hence computable categoricity for the following types of partial

injection structures, A = (A, f):

• A has finitely many infinite orbits and finitely many finite chain orbit

• A has no infinite orbits, infinitely many finite chain orbits of one size (call it �), finitely many

finite chain orbits of size other than �, and finitely many cycles of size ≥ �.

The other cases which we have not yet discussed are then:

• Infinitely many infinite orbits

• Infinitely many finite chain orbits such that:

– There are infinitely many finite chain orbits of only one size, �, and . . .

24

◦ any number (finite or infinite) of infinite orbits, or

◦ infinitely many cycles of size ≥ �.

– There are infinitely many finite chain orbits of two or more sizes.

– There are infinitely many finite chains of arbitrarily large size.

Note that in the final two categories above, we mean the following. Each of the two sizes of finite

chains has infinitely many finite chains in it — for instance, infinitely many �-chains and infinitely

many m-chains, for some �,m < ω. The infinitely many finite chains of arbitrarily large size may

have possibly only finitely many of each finite size, but must have arbitrarily many such sizes – for

instance: one 1-chain, and one 2-chain, and one 3-chain, and so on.

We now proceed here to provide counter examples of types of partial injection structures within

each of the preceding categories. We begin first by examining partial injection structures with

infinitely many infinite orbits. Cenzer, Harizanov, and Remmel proved that any computable injection

structure with infinitely many infinite orbits is not computably categorical. We get a similar result

for partial computable injection structures if we restrict ourselves to partial injection structures with

only infinitely many infinite orbits of one type and nothing else.

Theorem 2.7. If A is a partial computable injection structure with infinitely many infinite orbits

of one type (Z-, ω-, or ω∗
-), and no other types of orbits, then A is not computably categorical.

Proof. In [7] Cenzer, Harizanov, and Remmel constructed computable injection structures with in-

finitely many Z-orbits which were not computably categorical, and they also constructed computable

injection structures with infinitely many ω-orbits which were not computably categorical. Since a

computable injection structure is also a partial computable injection structure, these same con-

structions will build partial computable injection structures with infinitely many Z-orbits, or with

infinitely many ω-orbits, which are also not computably categorical. Therefore, to complete the

proof for partial computable injection structures, we need only examine the case where our partial

computable injection structure has infinitely many ω∗-orbits.

If we examine in detail the constructions for infinitely many Z-orbits and for infinitely many

ω-orbits in [7], we see that the constructions are for the most part identical. Both constructions

build a computable injection structure up in stages, each checking the same conditions and building

the necessary orbits accordingly. To build infinitely many ω-orbits, we attach elements to the end

or right-hand side of the previously built orbits and grow the orbit in the “forward” direction. To

build infinitely many Z-orbits, we attach elements to alternating ends of the previously built orbits

and grow the orbit in both the “forward” and the “backward” directions.

25

A straightforward adaptation of this same construction yields the infinitely many ω∗-orbits nec-

essary. We build a partial computable injection structure up in stages, checking the same conditions

as before and building the necessary orbits accordingly. In this case, we attach elements to the

beginning or left-hand side of the previously built orbits and grow the orbit in the “backward”

direction. The details follow as expected, so that in the end we have a partial computable injection

structure with infinitely many ω∗-orbits which is not computably categorical.

We now examine what happens for partial computable injection structures with infinitely many

finite chain orbits of two sizes and no other types of orbits. By this we mean that there are infinitely

many k-chains and infinitely many m-chains for some k < m < ω, and there are no other orbits

in the structure. Note that if we are following along in the order that we listed all the different

possibilities of types of partial computable injection structures, we have skipped a few scenarios. We

present the results in the order here, since the various scenarios build upon each other.

Theorem 2.8. If A is a partial computable injection structure with infinitely many finite chain

orbits of two different sizes and no other types of orbits, then A is not computably categorical.

Before writing a formal proof of Theorem 2.8, we proceed first with an example. This example

will give the ideas of the methods used in the more general proof, but in a more concrete (and

hopefully therefore more understandable) setting.

Example 2.9 (Specific case of Theorem 2.8). Let A be a partial injection structure with infinitely

many finite chain orbits of size 2 and infinitely many finite chain orbits of size 3, and no other orbits

of any other types. Then A is not computably categorical.

Proof of Example 2.9. We assume that A = (N, f) with f defined by using multiples of 5, so that “0”

and “1” form the 2-chains, and “2”,“3”, and “4” form the 3-chains. Formally we define f as follows

for each n ∈ N: f(5n) = 5n+1; f(5n+1) = ↑; f(5n+2) = 5n+3; f(5n+3) = 5n+4; f(5n+4) = ↑.

A picture of what f ’s orbits look like is contained in Figure 2.2.

26

•

0

•

1

•

2

•

3

•

4

•

5

•

6

•

7

•

8

•

9

•

10

•

11

•

12

•

13

•

14

•

15

•

16

•

17

•

18

•

19

...

Figure 2.2: Partial computable injection structure A with infinitely many 2-chains and infinitely
many 3-chains in which dom(f) is computable.

In this case, we have that dom(f) = N − ({5n + 1 : n ∈ N} ∪ {5n + 4 : n ∈ N}), which is a

computable set. Our goal will be to construct a partial injection structure, B = (N, g), isomorphic

to A in which dom(g) is not computable.

Let C be some noncomputable c.e. set which does not contain 0. By using the usual conventions

(see for instance [42] or [14]), we can assume that there exists a computable sequence of finite sets,

{Cs}s≥0, such that C = ∪s≥0Cs, and such that for all s, Cs ⊆ {0, 1, . . . , s − 1}, Cs ⊆ Cs+1, and

card(Cs+1 − Cs) ≤ 1.

We will build g up in stages, gs, so that in the end g = lims gs.

stage 0: We take g0 to be the function that is completely undefined. That is ∀x, let g0(x)
def
=↑.

stage s: Assume at the end of stage s we have the following:

• ∀i ∈ {1, . . . , s} all of the following hold:

(i) gs
�
5(i− 1)

�
= 5(i− 1) + 1

(ii) gs
�
5(i− 1) + 4

�
=↑

(iii) gs
�
5(i− 1) + 2

�
= 5(i− 1) + 3

• ∀i ∈ Cs ⊆ {1, . . . , s− 1} both of the following hold:

(iv) gs
�
5(i− 1) + 1

�
= 5(s− 1) + 4

(v) gs
�
5(i− 1) + 3

�
=↑

• and, ∀i < s:

(vi) 5(i− 1) + 4 ∈ range(gs)

27

stage s+1: We assume that at the end of stage s, (i)-(vi) held as appropriate and we now extend

gs to gs+1. Note, that at a previous stage t < s+1 we may have defined gt(x) =↑, and at this

stage we may define gs+1(x) ↓. This is ok, as we are building g to be a partial computable

function, which may not halt on some inputs until we get to a certain stage.

• First extend gs to gs+1 by defining gs+1 on the following inputs:

gs+1(5s)
def
= 5s+ 1

gs+1(5s+ 1)
def
=↑

gs+1(5s+ 2)
def
= 5s+ 3

• Now, check whether Cs+1 − Cs = ∅.

• If Cs+1 − Cs �= ∅ we note that by assumption card(Cs+1 − Cs) ≤ 1, therefore there can

be only one element in Cs+1 − Cs, call it i ∈ Cs+1 − Cs. Define gs+1 on the following

inputs:

gs+1

�
5(i− 1) + 1

� def
= 5(s) + 4

gs+1(5s+ 3)
def
=↑

This has the effect of turning the 2-chain corresponding to n = (i − 1) into the 3-chain

corresponding to n = s, and hence the first part of the n = s 3-chain becomes a 2-chain.

• If Cs+1 − Cs = ∅, further extend gs to gs+1 by defining:

gs+1(5s+ 3)
def
= 5s+ 4

Let g = lims gs.

This completes the construction. To see more intuitively what’s happening during the construction,

we examine the following pictures.

At the beginning of each stage s + 1 we build the following finite chains. (We have not yet

determined whether 5s+ 3 will go anywhere):

• −→ •

5s 5s+ 1

• −→ • −→ ?

5s+ 2 5s+ 3

28

If there is some i ∈ Cs+1 − Cs then we complete these finite chains by taking the (previously

defined) 2-chain corresponding to n = i − 1 and turning it into a 3-chain. We leave the remaining

two finite chains as already built:

• −→ •

5s 5s+ 1

• −→ •

5s+ 2 5s+ 3

• −→ • −→ •

5(i− 1) 5(i− 1) + 1 5s+ 4

If there is no i ∈ Cs+1 − Cs then we simply complete the already-built finite chains as follows:

• −→ •

5s 5s+ 1

• −→ • −→ •

5s+ 2 5s+ 3 5s+ 4

We have built g over N, since at each stage, s+1, of the construction, we designate what happens

to another multiple of natural numbers modulo 5, namely: 5s, 5s + 1, 5s + 2, 5s + 3, 5s + 4. The

function g as constructed is indeed well-defined. We note that during the construction, we may

initially designate gt(x) =↑ and then at a later stage, s > t, designate gs(x) ↓= y. This is ok, as we

define g = lims gs, and we are building g to be a partial computable function. A partial computable

function may not halt for a given input, x, at an initial stage of computation. The key ingredient

to the construction is that once gs(x) ↓= y, then this remains the case for all later stages.

We see that g is indeed partial computable because we have defined a partial computable process

to compute g on input x. Specifically: given input x we follow the above construction; if at some

stage gs(x) ↓= y, then halt and output g(x) = y; otherwise, compute forever. It is also clear that g

is a 1-1 function since at each stage of the construction, we never specify gs(x) = y for two different

x’s.

Therefore, we let B = (N, g), and we have that B is a partial computable injection structure.

Now, it is clear that A = (N, f) � B = (N, g), since we have A = B = N, and we have built g to

have exactly the same numbers, sizes, and types of orbits (namely infinitely many 2-chains, infinitely

many 3-chains, and no other types of orbits) as f . To complete the proof then, we need to show

29

that dom(g) is not computable. Notice that as constructed,

x ∈ dom(g) ⇐⇒ x = 5n+ 2 for some n ∈ N, or,

x = 5n for some n ∈ N, or,

x = 5(i− 1) + 1 for some i ∈ C, or,

x = 5s+ 3 for some s such that Cs+1 − Cs = ∅

Therefore dom(g) = {5n+2 : n ∈ N}∪{5n : n ∈ N}∪{5(i−1)+1 : i ∈ C}∪{5s+3 : Cs+1−Cs = ∅}.

This is essentially the computable join of four sets: N,N, C, and {s : Cs+1 −Cs = ∅}. It is therefore

only computable iff all of the sets are computable, but we know that C is not computable. Therefore,

dom(g) is not computable.

Thefore, we have built a computable copy of A in which the domain of the injection is not

computable. Therefore A is not computably categorical.

Finally, to demonstrate this example even more concretely in Figure 2.3 we give a diagram of

what this process would look like using some noncomputable, c.e. set C with C0 = C1 = C2 = C3 =

C4 = ∅, C5 = {3}, C6 = {3, 5} = C7. We give the explicit construction up through stage 7. The

finite chains in red were created and switched during stage 5, the finite chains in blue were created

and switched during stage 6.

30

•

0

•

1

•

2

•

3

•

4

•

5

•

6

•

7

•

8

•

9

•

22

•

23

•

12

•

13

•

14

•

15

•

16

•

17

•

18

•

19

•

27

•

28

•

10

•

11

•

24

•

25

•

26

•

20

•

21

•

29

•

30

•

31

•

32

•

33

•

34

...

Figure 2.3: Construction through stage 7 of a partial computable injection structure with infinitely
many 2-chains and infinitely many 3-chains in which dom(g) is not computable.

We can now proceed with a formal proof of Theorem 2.8, that for finite m and n, a partial

computable injection structure with infinitely many m-chains and infinitely many k-chains and no

other types of orbits is not computably categorical.

Proof of Theorem 2.8. We let A be some partial computable injection structure with infinitely many

k-chains and infinitely many m-chains for some k < m < ω, and with no other types of orbits. The

proof of this follows closely to the proof contained in Example 2.9, with the following modifications.

Without loss of generality we assume A = (N, f) with f defined as follows so that dom(f) is a

computable set. (That is, we assume that our given structure is computably isomorphic to such a

structure A. If not, then we will have already found a counterexample, and our given structure can

therefore not be computably categorical, thereby completing the proof.)

We define f by multiples of (k+m) so that 0, . . . , k−1 define the k-chains and k, . . . , (k+m)−1

31

define the m-chains. That is, f is defined as follows for each n ∈ N:

k-chains:

f
�
(k +m)n

�
= (k +m)n+ 1

f
�
(k +m)n+ 1

�
= (k +m)n+ 2

...

f
�
(k +m)n+ (k − 2)

�
= (k +m)n+ (k − 1)

f
�
(k +m)n+ (k − 1)

�
= ↑

m-chains:

f
�
(k +m)n+ k

�
= (k +m)n+ (k + 1)

f
�
(k +m)n+ (k + 1)

�
= (k +m)n+ (k + 2)

...

f
�
(k +m)n+ (k +m)− 2

�
= (k +m)n+ (k +m)− 1

f
�
(k +m)n+ (k +m)− 1

�
= ↑

Therefore, if we examine which elements of N do not halt under f , we see that dom(f) = {(k +

m)n+ (k − 1) : n ∈ N} ∪ {(k +m)n+ (k +m)− 1 : n ∈ N}, which is clearly a computable set.

We again let C be some noncomputable c.e. set with the same restrictions as in Example 2.9.

We build B in much the same manner, modifying the construction so at stage s + 1 we instead do

the following.

• First extend gs to gs+1 by defining gs+1 on the following inputs:

Create a new k-chain:

gs+1

�
(k +m)s

� def
= (k +m)s+ 1

gs+1

�
(k +m)s+ 1

� def
= (k +m)s+ 2

...

gs+1

�
(k +m)s+ (k + 1)

� def
= ↑

Create the first part (k-many) of a new m-chain:

gs+1

�
(k +m)s+ k

� def
= (k +m)s+ k + 1

32

...

gs+1

�
(k +m)s+ k + (k − 2)

� def
= (k +m)s+ k + (k − 1)

Create the second part ((m− k)-many) of a new m-chain:

gs+1

�
(k +m)s+ k + k

� def
= (k +m)s+ k + k + 1

...

gs+1

�
(k +m)s+ (k +m)− 2

� def
= (k +m)s+ (k +m)− 1

gs+1

�
(k +m)s+ (k +m)− 1

� def
= ↑

• Check whether Cs+1 − Cs = ∅.

• If Cs+1 − Cs �= ∅, let i ∈ Cs+1 − Cs. Define gs+1 on the following inputs:

gs+1

�
(k +m)(i− 1) + (k − 1)

� def
= (k +m)s+ k + k

gs+1

�
(k +m)s+ k + (k − 1)

� def
= ↑

This turns the k-chain corresponding to n = (i− 1) into the m-chain corresponding to n = s.

The first (k-many) part of the m-chain corresponding to n = s then becomes a k-chain.

• If Cs+1 − Cs = ∅, further extend gs to gs+1 by defining:

gs+1

�
(k +m)s+ k + (k − 1)

� def
= (k +m)s+ k + k

We let g = lims gs, and g is partial computable. As built B = (N, g) has infinitely many k-chains

and infinitely many m-chains, and is therefore isomorphic to A. We examine which elements of N

do not halt under g. We have that:

x /∈ dom(g) ⇐⇒ x = (k +m)n+ (k +m)− 1 for some n ∈ N, or,

x = (k +m)(i− 1) + (k − 1) for some i /∈ C, or,

x = (k +m)s+ k + (k − 1) for some s such that Cs+1 − Cs �= ∅

Therefore dom(g) = {(k + m)n + (k + m) − 1 : n ∈ N} ∪ {(k + m)(i − 1) + (k − 1) : i /∈ C} ∪

{(k+m)s+k+(k−1) : Cs+1−Cs �= ∅}. This is essentially the computable join of three sets: N, C,

and {s : Cs+1 − Cs �= ∅}, and it is therefore not computable since C is not computable. Therefore,

A and B cannot be computably isomorphic.

33

We now move on to examine computable categoricity when a partial computable injection struc-

ture has infinitely many finite chain orbits of only one single size and additionally an infinite orbit.

We show that the existence of even just one infinite orbit will cause computable categoricity to fail.

Theorem 2.10. If A is a partial computable injection structure with infinitely many finite chain

orbits of only one size (call it �), and one ω-orbit, ω∗-orbit, or Z-orbit, then A is not computably

categorical.

Proof. We first let A be some partial computable injection structure with infinitely many �-chains

(for some � > 0) and one single ω-orbit. Without loss of generality we assume A = (N, f) with

f defined as follows so that dom(f) is a computable set. (That is, we assume that our given

structure is computably isomorphic to such a structure A. If not, then we will have already found a

counterexample, and our given structure cannot be computably categorical, thereby completing the

proof.) We define f by multiples of (� + 1) so that the “0”s together define the single ω-orbit, and

each 1, . . . , � defines an �-chain. That is, we define f as follows for each n ∈ N.

ω-orbit : f
�
(�+ 1)n

�
= (�+ 1)(n+ 1)

�-chains : f
�
(�+ 1)n+ 1

�
= (�+ 1)n+ 2

f
�
(�+ 1)n+ 2

�
= (�+ 1)n+ 3

...

f
�
(�+ 1)n+ (�− 1)

�
= (�+ 1)n+ �

f
�
(�+ 1)n+ �

�
= ↑

Then A clearly has one ω-orbit and infinitely many �-chains. Furthermore, we see that dom(f) =

{(�+1)n+ � : n ∈ N}, which is a computable set. We will computably build B = (N, g) up in stages

so that dom(g) is not computable.

We again let C be some non-computable, c.e. set enumerated in stages Cs such that: C = ∪sCs,

Cs ⊆ {0, . . . , s− 1}, and card(Cs+1 − Cs) ≤ 1.

We will build g up in stages, gs, so that in the end g = lims gs.

stage 0: We begin to build the ω-orbit, and we build one single �-chain. We define g0 as follows:

g0

�
(�+ 1) · 0

�
= ↑

g0

�
(�+ 1) · 0 + 1

�
= (�+ 1) · 0 + 2

g0

�
(�+ 1) · 0 + 2

�
= (�+ 1) · 0 + 3

34

...

g0

�
(�+ 1) · 0 + (�− 1)

�
= (�+ 1) · 0 + �

g0

�
(�+ 1) · 0 + �

�
= ↑

stage s: Assume at the end of stage s we have the following:

• ∀i ≤ s all of the following hold:

(�+ 1)i ∈ Ogs(0)

gs

�
(�+ 1)i+ 1

�
= (�+ 1)i+ 2

...

gs

�
(�+ 1)i+ (�− 1)

�
= (�+ 1)i+ �

gs

�
(�+ 1)i+ �

�
= ↑

• ∀i ∈ Cs:

(�+ 1)i+ � ∈ Ogs(0)

stage s+1: We we now extend gs to gs+1.

• First extend gs to gs+1 by extending the single ω-orbit by one additional element and

building another �-chain. For convenience, we let a = the unique element in Ogs(0) such

that gs(a) has not yet been defined. Note that if, in the prior stage some i showed up in

Cs, then a = (�+1)i+ �. If, however, no new i showed up in the prior stage, we will have

a = (�+ 1)s. We accomplish this by defining gs+1 on the following inputs.

gs+1(a) = (�+ 1)(s+ 1)

gs+1

�
(�+ 1)(s+ 1) + 1

�
= (�+ 1)(s+ 1) + 1

...

gs+1

�
(�+ 1)(s+ 1) + (�− 1)

�
= (�+ 1)(s+ 1) + �

gs+1

�
(�+ 1)(s+ 1) + �

�
= ↑

• Now, check whether Cs+1 − Cs = ∅.

• If Cs+1 −Cs �= ∅, let i be the unique element in Cs+1 −Cs. Define gs+1 on the following:

gs+1

�
(�+ 1)(s+ 1)

�
= (�+ 1)i+ 1

This has the effect of taking the �-chain built during stage i and attaching it to the end

of the ω-orbit. That is
�
(�+ 1)i+ 1

�
∈ Ogs+1(0), . . . ,

�
(�+ 1)i+ �

�
∈ Ogs+1(0).

• If Cs+1 − Cs = ∅, there is nothing further to do and this completes the stage.

35

Let g = lims gs. This completes the construction. Then g is partial computable, since for any

input x we simply carry out the above process until we find a stage s for which gs(x) ↓, possibly

computing forever if no such stage is reached. Clearly, B = (N, g) as built will have one ω-orbit,

namely Ogs+1(0). Furthermore, since C is not computable, there must be infinitely many i /∈ C, and

hence infinitely many of the �-chains that we’ve built remain as �-chains and do not at some later

point get attached into the ω-orbit. Therefore B has one ω-orbit and infinitely many �-chains, and

hence is isomorphic to A.

If we examine elements that do not halt under g, we find that dom(g) = {(�+ 1)n+ � : n /∈ C}.

Hence dom(g) is not computable since C is not computable. Since dom(f) is computable, this means

that A and B cannot be computably isomorphic.

For the case where A has infinitely many �-chains and one ω∗-orbit, we simply modify the proof

so that at each stage, we attach elements and �-chains to the beginning (left-hand side) of the orbit

to create an ω∗-orbit. For the case where A has infinitely many �-chains and one Z-orbit, we modify

the proof so we attach to both sides of the orbit (at alternating stages, attach to the beginning/left

and then to the end/right), in order to create a Z-orbit.

The next case we examine is when our partial computable injection structure A has infinitely

many finite chains of arbitrarily large size. In this instance, we mean that there may not be infinitely

many finite chains of any one single size, but there are infinitely many such sizes. We let {ki}i≥0

represent the sequence of all sizes of finite chain orbits, so that A has exactly one finite chain orbit

of size ki for each i. Note, then, that with this notation, if A has, for instance, exactly two m-

chains, then m will show up exactly twice in the sequence. For A to have infinitely many sizes (or

equivalently, arbitrarily large sizes), this means that for every n ∈ N, there exists some i for which

ki > n. We break out our examination of such a structure into the following two cases:

(a) {ki}i≥0 is a computable sequence

(b) {ki}i≥0 is not a computable sequence

The following result makes significant progress towards showing that partial computable injection

structures with finite chains as in case (a), are not computably categorical. We do not examine

part (b) here, and instead leave the investigation of this type of structure for future research.. (See

Section 3.5 for a slightly lengthier discussion of this topic.)

36

Theorem 2.11. Let A be a partial computable injection structure with infinitely many finite chain

orbits of increasingly large arbitrary size. Let {ki}i≥0 represent the sequence of all sizes of finite

chain orbits, so that A has exactly one finite chain orbit of size ki for each i. If {ki}i≥0 is a

computable, strictly increasing sequence, then A is not computably categorical.

Proof. We let A = (N, f) be a partial computable injection structure whose only orbits are finite

chains with sizes from our computable, strictly increasing sequence {ki}i≥0. Without loss of gener-

ality, we assume that dom(f) is a computable set. (That is, we assume that our given structure is

computably isomorphic to such a structure A. If not, then we will have already found a counterex-

ample, and our given structure cannot therefore be computably categorical, thereby completing the

proof.)

Our goal will be to build B = (N, g) to be a partial computable injection structure where B

also has sizes of chains coming from {ki}i≥0 where dom(g) is not a computable set. We let C be

some noncomputable c.e. set of odd numbers — for example, take C = {2e + 1 : e ∈ halting set}.

Furthermore, we let C have computable enumeration Cs such that for all s, Cs ⊆ {0, 1, . . . , s − 1},

card(C2s+2 − C2s+1) ≤ 1, and card(C2s+1 − C2s) = 0. Therefore, C consists only of odd numbers,

which show up at only even stages in our enumeration. We will build g up in stages gs. At each

stage s we will add ks new elements to our structure and we will create a finite chain of size ks. The

way in which we create the finite chains will depend upon our noncomputable set C so that in the

end dom(g) is not computable. For convenience, let Ki =
�i

j=0 kj .

stage 0: Create a finite chain of size k0 starting with 0, as follows:

g0(0) = 1

g0(1) = 2

...

g0(k0 − 2) = k0 − 1

g0(k0 − 1) = g0(K0 − 1) = ↑

stage s: (Inductive stage) Assume at the end of stage s we have the following:

• gs consists of exactly one finite chain of size ki for all i ≤ s

• ∀i ≤ s such that i /∈ Cs, gs(Ki − 1) = ↑

• ∀i, t ≤ s such that i ∈ Ct − Ct−1, gs(Kt−1 + ki − 1) = ↑

• gs(x) ↓ for all other inputs x ≤ Ks − 1.

37

stage s+ 1: We now extend gs to gs+1, and we will add ks+1 new elements into the construction at

this stage. Note, that at a previous stage t < s+1 we may have defined gt(x) = ↑, and at this

stage we may define gs+1(x) ↓. This is ok, as we are building g to be a partial computable

function, which may not halt on some inputs until we get to a certain stage.

• First check if any new i are enumerated into Cs+1.

• If Cs+1 − Cs �= ∅, then let i be the unique element such that i ∈ Cs+1 − Cs. We create

a finite chain of size ks+1 by taking the previously defined ki-chain, adding (ks+1 − ki)-

many more elements to it, and hence turning it into a ks+1-chain. To accomplish this,

we extend gs as follows:

gs+1(Ki − 1) = Ks + ki

gs+1(Ks + ki) = Ks + ki + 1

...

gs+1(Ks + ki + (ks+1 − ki)− 2) = Ks + ki + (ks+1 − ki)− 1

gs+1(Ks + ki + (ks+1 − ki)− 1) = gs+1(Ks+1 − 1) = ↑

Additionally, we replace the ki-chain that we just turned into a ks+1-chain by extending

gs as follows:

gs+1(Ks) = Ks + 1

gs+1(Ks + 1) = Ks + 2

...

gs+1(Ks + ki − 2) = Ks + ki − 1

gs+1(Ks + ki − 1) = ↑

• If Cs+1 − Cs = ∅, then create a new finite chain of size ks+1 by defining gs+1 on the

following inputs.

gs+1(Ks) = Ks + 1

gs+1(Ks + 1) = Ks + 2

...

gs+1(Ks + ks+1 − 2) = Ks + ks+1 − 1

gs+1(Ks + ks+1 − 1) = gs+1(Ks+1 − 1) = ↑

Now, let g = lims gs. This completes the construction. This limit exists, since once gs(x) ↓= y, then

∀t > s, we have gt(x) = y. We also have that g is indeed a partial computable function, since to

38

determine g(x) for some input x, we simply run the above construction until we have specified that

gs(x) ↓ for some stage s; if we never find such a stage s, we simply compute forever. Note that in

this construction, since {ki}i≥0 is a computable, indeed strictly increasing, sequence, we can always

computably determine what the next ks is. We let B = (N, g) and therefore we have that B is a

partial computable injection structure.

Furthermore, B has exactly one finite chain of size ki for each i ≥ 0, which we can see as follows.

At each stage s we add exactly one finite chain of size ks. Sometimes we do this by taking the next

ks elements of N and turning them into a finite ks-chain. Sometimes we do this by taking the next

ks elements of N and attaching (ks−ki) of them to a ki-chain (thus turning the original ki-chain into

a ks-chain), and creating a new ki-chain out of the remaining ones in order to replace the original.

Since C contains only odd numbers, and those odd numbers show up at only even stages of our

enumeration, we know that ki-chains can only be turned into ks-chains for even s. Furthermore we

know that once a ki-chain has been turned into a ks-chain, it remains a ks-chain thereafter, since

no even s will ever show up in our set C. This means there is no danger that one of these original

ki-chains gets added on to infinitely many times, and our construction will indeed yield only finite

chains of size ki for each i ≥ 0. Therefore, B is isomorphic to A.

Now, examining which elements do not halt under g — that is, which elements are not in dom(g)

— we have the following:

x /∈ dom(g) ⇐⇒ (x = end of ki-chain for some i /∈ C) ∨

(x = “mid”-point of ks-“chain” where

new i showed up in C at stage s)

⇐⇒ (x = Ki − 1 for some i /∈ C) ∨

(x = Ks + ki − 1 for some i ∈ Cs+1 − Cs)

∴ dom(g) = {Ki − 1 : i /∈ C} ∪ {Ks + ki − 1 : i ∈ Cs+1 − Cs}

Hence dom(g) is not a computable set since C is not computable. By assumption, in A dom(f)

is a computable set. Therefore B = (N, g) cannot be computably isomorphic to A = (N, f), and

hence A cannot be computably categorical.

We now come back to the case where A has infinitely many finite chains of one size and infinitely

39

many cycles of the same or bigger sizes. This situation builds heavily off the ideas in the preced-

ing proofs of Theorem 2.8 and Theorem 2.11. We make progress towards showing that a partial

computable injection structure with infinitely many �-chains and infinitely many “≥� ”-cycles is not

computably categorical. Note that unlike in Example 2.9, the cycles do not all have to be of the

same size, nor do there have to be infinitely many of any particular size. We simply require that

the cycles have size ≥ � and that there are infinitely many such cycles. For instance, having one

(�+ 1)-cycle, one (�+ 2)-cycle, one (�+ 3)-cycle, and so on, would suffice.

We let {ki}i≥1 represent the sequence of all sizes of “≥� ”-cycles, so that A has exactly one cycle

of size ki ≥ � for each i. Again we note that by this notation we mean that if A has exactly two

m-cycles, then m will show up exactly twice in the sequence. We break out our examination of such

a structure into the following two cases:

(a) {ki}i≥1 can be computably enumerated

(b) {ki}i≥1 can not be computably enumerated

The following result shows that partial computable injection structures with orbits that consist only

of cycles of size ≥ � as in case (a), are not computably categorical. We do not examine part (b) here,

and instead leave the investigation of this type of structure for future research.. (See Section 3.5 for

a slightly lengthier discussion of this topic.)

Theorem 2.12. Let A be a partial computable injection structure with infinitely many finite chain

orbits of size � and infinitely many finite cycles of size ≥ �, and no other types of orbits. Let {ki}i≥1

represent the sequence of all sizes of finite chain orbits, so that A has exactly one finite chain orbit

of size ki ≥ � for each i. If {ki}i≥1 can be computably enumerated, then A is not computably

categorical.

Proof. We build heavily off the constructions in Theorem 2.8 and Theorem 2.11. We let A = (N, f)

be a partial computable injection structure with infinitely many �-chains and with infinitely many

cycles of size ≥ �, where the cycle sizes are contained in some sequence {ki}i≥1 which we can

enumerate computably. Furthermore, we assume that dom(f) is a computable set.

We will build B = (N, g) to be a partial computable injection structure with infinitely many

�-chains and infinitely many cycles of sizes from {ki}i≥1 where ki ≥ � for each i. To do this, we let

C be some noncomputable c.e. set with enumeration Cs such that for all s, Cs ⊆ {0, 1, . . . , s − 1}

and card(Cs+1 − Cs) ≤ 1. We build g up in stages gs. At each stage s we will add (� + ks)-many

new elements to our structure, and we will create an �-chain and a ks-cycle. The way in which we

40

create the finite chains and cycles will depend upon our noncomputable set C so that in the end

dom(g) is not computable. For convenience, let Ki =
�i

j=1 kj .

stage 0: Define ∀x, g0(x)
def
= ↑.

stage s: (Inductive stage) Assume at the end of stage s we have the following:

• gs consists of exactly one cycle of size ki for all i ≤ s, and exactly s-many �-chains

• ∀i ≤ s such that i /∈ Cs, gs(�(i− 1) +Ki−1 + �− 1) = ↑

• ∀i, t < s such that i ∈ Ct+1 − Ct, gs(�t+Kt + �+ kt+1 − 1) = ↑

• gs(x) ↓ for all other inputs x ≤ s�+Ks − 1.

stage s+ 1: We now extend gs to gs+1, and we will add (� + ks+1)-many new elements into the

construction at this stage.

• First create an �-chain as follows:

gs+1

�
�s+Ks

� def
= �s+Ks + 1

...

gs+1

�
(�s+Ks) + �− 2

� def
= (�s+Ks) + �− 1

gs+1

�
(�s+Ks) + �− 1

� def
= ↑

• Now check if any new i are enumerated into Cs+1.

• If Cs+1 − Cs = ∅, then create a new cycle of size ks+1 by defining gs+1 on the following

inputs.

gs+1(�s+Ks + �) = �s+Ks + �+ 1

...

gs+1

�
(�s+Ks + �) + (ks+1 − 2)

�
) = (�s+Ks + �) + (ks+1 − 1)

gs+1

�
(�s+Ks + �) + (ks+1 − 1)

�
) = �s+Ks + �

• If Cs+1 −Cs �= ∅, then let i be the unique element such that i ∈ Cs+1 −Cs. We take the

previously defined �-chain from stage i and turn it into a ks+1-cycle — this will require

(ks+1 − �)-many elements. Then we use the remaining �-many elements for this stage to

create an �-chain to replace the one that we just turned into a cycle. To accomplish this,

we extend gs as follows:

Turn �-chain into ks+1-cycle. If ks+1 > � + 1, do all of i.-v. below. If ks+1 = � + 1,

do only i. and v. below. If ks+1 = �, do only vi. below.

41

i. gs+1

�
�(i− 1) +Ki−1 + �− 1

�
= �s+Ks + �

ii. gs+1(�s+Ks + �) = �s+Ks + �+ 1

iii.
...

iv. gs+1

�
(�s+Ks + �) + (ks+1 − �− 2)

�
= (�s+Ks + �) + (ks+1 − �− 1)

v. gs+1

�
(�s+Ks + �) + (ks+1 − �− 1)

�
= �(i− 1) +Ki−1

vi. gs+1

�
�(i− 1) +Ki−1 + �− 1

�
= �(i− 1) +Ki−1

Create �-chain to replace the one we just turned into a cycle.

gs+1(�s+Ks + �) = (�s+Ks + �) + 1

...

gs+1

�
(�s+Ks + �) + (ks+1 − 2)

�
= (�s+Ks + �) + (ks+1 − 1)

gs+1

�
(�s+Ks + �) + (ks+1 − 1)

�
= (�s+Ks + �)

gs+1(�s+Ks + �) = ↑

We let g = lims gs. Then by construction, B = (N, g) is a partial computable injection structure

with infinitely many �-chains and infinitely many cycles with sizes from {k1}i≥1. Therefore B � A.

We now examine elements which are not in dom(g).

x /∈ dom(g) ⇐⇒ x = �(i− 1) +Ki−1 + �− 1 for some i /∈ C, or,

x = (�s+Ks + �) + (ks+1 − 1) for some s with Cs+1 − Cs �= ∅

Therefore dom(g) is not a computable set since C is not computable. By assumption, dom(f) is

computable. Therefore A and B cannot be computably isomorphic.

This now completes our examination of computable categoricity for the conditions not covered by

Corollary 2.6. We have shown that a substantial number of these situations yield non-computably

categorical partial injection structures.

42

Chapter 3

Higher Levels of Categoricity and

Index Sets of Partial Injection

Structures

We now wish to examine higher levels of categoricity for partial injection structures, specifically

∆0
2 and ∆0

3 categoricity. In addition, we also define index sets for partial injection structures,

and examine some preliminary results. Again, we are slightly abusing notation here. We say that a

partial computable injection structureA is∆0
2 or∆

0
3 categorical iff every partial computable injection

structure isomorphic to A is isomorphic to A via an isomorphism which is ∆0
2 or ∆0

3 computable.

Traditionally, the definitions of ∆0
2 or ∆0

3 categorical require that the structures themselves be

computable, not just partial computable. As previously mentioned, a straightforward Marker’s

extension of our partial computable injection structure will yield an equivalent, computable structure.

3.1 Relatively ∆
0
2-Categorical Partial Injection Structures

We begin our examination of higher levels of categoricity of partial injections structures by investi-

gating ∆0
2-categoricity. Before examining this property for partial injection structures, we look first

at injection structures. We take note of the following result about ∆0
2-categoricity:

Theorem 3.1 (Cenzer, Harizanov, Remmel, [7]). Let A = (A, f) be a computable injection structure.

Then A is ∆0
2-categorical iff A has finitely many ω-orbits or finitely many Z-orbits.

43

We recall that the only types of infinite orbits in injection structures are ω-orbits and Z-orbits.

This result allows for possibly infinitely many infinite orbits of one type while maintaining ∆0
2-

categoricity. We recall from our results and discussion throughout Chapter 2 that finite chain orbits

often behaved like infinite orbits, since they too had no definitive “end point”. We will now show that

we get a correspondingly similar result for partial injection structures, once we allow for appropriate

consideration and modification of finite chains.

Theorem 3.2. If A = (A, f) is a partial computable injection structure which satisfies at least three

of the following four conditions:

• A has only finitely many Z-orbits

• A has only finitely many ω-orbits

• A has only finitely many ω∗
-orbits

• A has only finitely many sizes of finite chain orbits

then A is relatively ∆0
2-categorical.

Proof. The proof is contained in the following lemmas: Lemma 3.3, Lemma 3.5, Lemma 3.6, and

Lemma 3.7.

In other words, we can allow for exactly one of the four types of (non-cycle) orbits to have

possibly infinitely many such orbits or sizes. To show that a partial injection structure requires

three of the four conditions to be relatively ∆0
2-categorical, we breakup the proof and examine the

various types of orbits in triples. That is, we examine partial injection structures with the following:

• finitely many Z-orbits, finitely many ω-orbits and finitely many ω∗-orbits (no restriction on

finite chain orbits)

• finitely many Z-orbits, finitely many ω-orbits and finite chain orbits of only finitely many sizes

(no restriction on ω∗-orbits)

• finitely many Z-orbits, finitely many ω∗-orbits and finite chain orbits of only finitely many

sizes (no restriction on ω-orbits)

• finitely many ω-orbits, finitely many ω∗-orbits, and finite chain orbits of only finitely many

sizes (no restriction on Z-orbits)

44

Note that in all of the above cases, as with Theorem 2.4 and Theorem 2.5, we do not place any

restriction on cycle orbits. That is, we can allow for possibly infinitely many cycles without harming

∆0
2-categoricity. We proceed now with the proof for the first triple.

Lemma 3.3. If A = (A, f) is a partial computable injection structure with finitely many Z-orbits,

finitely many ω-orbits and finitely many ω∗
-orbits, then A is relatively ∆0

2-categorical.

Proof. This proof follows similar methods as those used in Theorem 2.4 and Theorem 2.5. Let

A = (A, f) be a partial computable injection structures with finitely many Z-orbits, ω-orbits, and

ω∗-orbits as follows:

• m ω-orbits with representatives a1, . . . , am s.t. ai /∈ range(f)

• n ω∗-orbits with representatives b1, . . . , bn s.t. bi /∈ dom(f)

• l Z-orbits with representatives z1, . . . , zl s.t. Of (zi) �= Of (zj) for i �= j

Goncharov ([22]) proved that A is relatively computably categorical iff A has a formally c.e. Scott

family, and Ash ([2]) extended this notion to ∆0
α-categoricity. Therefore, to show that A is ∆0

2-

categorical, we will show that A has a Σ0
2 Scott family, consisting of computable Σ0

2 formulas.

Let �d = d0, . . . , dr be a sequence in A distinct from a1, . . . , am, from b1, . . . bn, and from z1, . . . , zl.

Then ∀q ≤ r we have that either dq is part of a cycle, a chain, an ω-orbit, an ω∗-orbit, or a Z-orbit.

This corresponds to one of the following:

(1) ∃t fk
t (dq) = dq (for some fixed, minimal k > 0)

(2) ∃a∃t1∃t2∀b∀s
��
fk
s (a) ↑

�
∧

�
f
k−1
t1 (a) ↓

�
∧

�
fs(b) �= a

�
∧

�
f c
t2(a) = dq

��

(for some fixed k > 0, c < k)

(3) ∃t fk
t (ai) = dq (for some fixed k ≥ 0, i ∈ {1, . . . ,m})

(4) ∃t fk
t (dq) = bi (for some fixed k ≥ 0, i ∈ {1, . . . , n})

(5) ∃t fk
t (dq) = zi (for some fixed k ≥ 0, i ∈ {1, . . . , l})

(6) ∃t fk
t (zi) = dq (for some fixed k > 0, i ∈ {1, . . . , l})

Similar to Theorem 2.4 and Theorem 2.5, we note that in (1) if we have more than one element in

our sequence �d which meets this condition for the same value of k, then we have to specify whether

they are in the same cycle or different cycles. Therefore for dq, dQ in our sequence �d with q �= Q and

q,Q ≤ r, if both dq and dQ satisfy the same formula (1) with the same value of k then either:

45

(7) ∃t f
j
t (dq) ↓= dQ (for some fixed j < k)

(8) ∀j < k ∃t f
j
t (dq) ↓�= dQ

Similarly, if we have more than one element, dq and dQ, in our sequence �d which satisfies condition

(2) for the same value of k, regardless of the value of c, then we must specify whether they are in the

same or different finite chains. For convenience, we let cq represent the value of c from statement (2)

for dq, and we let cQ represent the value of c from statement (2) for dQ. Without loss of generality,

we assume that cq ≤ cQ. We have the following:

(9) ∃t f
cQ−cq
t (dq) = dQ

(10) ∀t f
cQ−cq
t (dq) �= dQ

It is clear that (2) is a Σ0
2 statement, that (10) is a Π0

1 statement, and that (3)-(7) and (9) are

all Σ0
1 statements since f is a partial computable function. We can expand (1) and (8) in the same

manner we did in Theorem 2.4 to show that they are also Σ0
1 statements.

To create the Σ0
2 Scott family, then, we simply take appropriate conjunctions of (1)-(10). As

defined, this is clearly a countable family. To complete the proof, we need only show that given two

sequences, �d and �e, in A, if they satisfy the same Scott formula, then there exists an automorphism,

h, such that h(�d) = �e. We first define a partial function h as follows:

h(x) =

x if x is in an infinite orbit

x if x is in a cycle or finite chain distinct from �d and �e

f j(eq) if x is in a k-cycle and x = f j(dq) for some j < k

f j(eq) if x is in finite chain and x = f j(dq) for some j < k − c

where k, c are as in (2)

y s.t. f j(y) = eq if x is in finite chain and f j(x) = dq for some 0 < j < c

where c is as in (2)

It is clear then that if x is in an infinite orbit or if x is in a cycle or finite chain distinct from �d

and �e, then h is the identity function, and therefore is 1-1 and preserves these orbits. For x in one

of the cycles or finite chains that contains one of d1, . . . , dr, it is easy to see that the Scott formulas

for �d and �e from (1), (2), (7) or (8), and (9) or (10) as appropriate, will ensure that the orbits are

preserved under h, and that h is 1-1. Finally, then, we extend h from a partial function to a total

46

one in the same manner as we did for Theorem 2.5 (taking cycles to cycles and chains to chains).

This will yield our desired automorphism.

Before showing that a partial computable injection structure with finitely many Z-orbits and

finitely many ω-orbits is relatively ∆0
2 categorical if it also has finitely many sizes of finite chain

orbits, we first show this holds if it has finitely many finite chain orbits.

Lemma 3.4. If A = (A, f) is a partial computable injection structure with finitely many Z-orbits,

finitely many ω-orbits and finitely many finite chain orbits, then A is relatively ∆0
2-categorical.

Proof. The proof of this follows closely that of Lemma 3.3, with some slight modifications. Let

A = (A, f) be a partial computable injection structures with finitely many Z-orbits, ω-orbits, and

finite chain-orbits as follows:

• m ω-orbits with representatives a1, . . . , am s.t. ai /∈ range(f)

• l Z-orbits with representatives z1, . . . , zl s.t. Of (zi) �= Of (zj) for i �= j

• p finite chain-orbits with representatives c1, . . . , cp s.t. ci /∈ dom(f)

To create our Scott family, we take (1), (3), and (5)-(8) to be the same as in Lemma 3.3. We

replace (2) and (4) as follows:

(2) ∃t fk
t (dq) ↓= ci (for some fixed k ≥ 0, i ∈ {1, . . . , p})

(4) ∃s∀t [(fk−1
s (dq)↓�= ci) ∧ (fk

t (dq)↑)] (for some fixed k > 0, and ∀i ∈ {1, . . . , p})

Additionally, if we have more than one element, dq and dQ, in our sequence �d which satisfies condition

(4) regardless of the value of k, then we must specify whether they are in the same or different ω∗-

orbits. For convenience, we let kq represent the value of k from statement (4) for dq, and we let

kQ represent the value of k from statement (4) for dQ. Without loss of generality, we assume that

kq ≥ kQ. We have the following:

(9) ∃t f
kq−kQ

t (dq) = dQ

(10) ∀t f
kq−kQ

t (dq) �= dQ

It is clear that (2) and (9) are Σ0
1 statements, (10) is a Π0

1 statement, and (4) is a Σ0
2 statement,

since f is partial computable. Then the Σ0
2 Scott family for A consists of appropriate conjunctions

of (1)-(10). As defined, this is clearly a countable family. To complete the proof, we need only show

47

that given two sequences, �d and �e, in A, if they satisfy the same Scott formula, then there exists an

automorphism, h, such that h(�d) = �e. We first define a partial function h as follows.

h(x) =

x if x is in Z-orbit, ω-orbit, or finite chain

x if x is in a cycle or ω∗-orbit distinct from �d and �e

f j(eq) if x is in a k-cycle and x = f j(dq) for some j < k

f j(eq) if x is in ω∗-orbit, and x = f j(dq) for some j ≤ k

where k is as in (4)

y s.t. f j(y) = eq if x is in ω∗-orbit, and f j(x) = dq for some j > 0

We now extend h from a partial function to a total one in a similar manner as we did for Theorem 2.5

and Lemma 3.3. We take cycles to cycles, with h(f j(eq)) = f j(dQ) for the next smallest q and Q

with dQ not yet in range(h). We also take ω∗-orbits to ω∗-orbits, sending the ω∗-orbit containing

the smallest q for which eq is not yet mapped in h to the ω∗-orbit containing the smallest Q for

which dQ is not yet in range(h), ensuring that we map the ends (right most points) of each ω∗-orbit

accordingly. Then, as before, it is easy to see that h now defines a total function which is 1-1, onto,

and preserves orbits, and therefore we have defined our desired automorphism.

We now take the previous result even one step further and allow for possibily infinitely many

finite chain orbits, as long as those finite chains are of only finitely many sizes. The key concept in

this proof is that even though we allow for possibly infinitely many finite chains, as long as the sizes

of the finite chains have some finite bound on them we can distinguish a finite chain from an infinite

orbit (in this case an ω∗-orbit) because we know exactly when to “stop waiting”.

Lemma 3.5. If A = (A, f) is a partial computable injection structure with finitely many Z-orbits,

finitely many ω-orbits and finite chain orbits of only finitely many sizes, then A is relatively ∆0
2-

categorical.

Proof. The proof of this follows closely that of Lemma 3.4, with some slight modifications. Let

A = (A, f) be a partial computable injection structure with finitely many Z-orbits and ω-orbits,

and finite chain-orbits as follows:

• m ω-orbits with representatives a1, . . . , am s.t. ai /∈ range(f)

• l Z-orbits with representatives z1, . . . , zl s.t. Of (zi) �= Of (zj) for i �= j

48

• finite chain-orbits only of sizes �1, . . . , �p

To create our Scott family, we take (1), (3), and (5)-(8) to be the same as in Theorem 2.4. To

replace (2) and (4) we note the following. Let � = max{�1, . . . , �p}.

dq ∈ finite chain ⇐⇒ dq in finite chain of size �i for some i ∈ {1, . . . , p}

dq ∈ ω
∗-orbit ⇐⇒ (dq in an orbit which does not go infinitely forward) ∧

(the orbit goes backward farther than the largest �i)

We can now replace (2) and (4) as follows:

(2) ∃a∃t1∃t2∀s∀b
��
fs(b) �= a

�
∧

�
f �i
s (a) ↑

�
∧

�
f
�i−1
t1 (a) ↓

�
∧

�
fk
t2(a) = dq

��

(for some fixed i ∈ {1, . . . , p} and k < �i)

(4) ∃b∃t1∃a∃t2∀s
��
fs(b) ↑

�
∧

�
fk
t1(dq) = b

�
∧

�
f �
t2(a) = b

��

(for some fixed k > 0)

Note, if we have more than one element, dq and dQ, in our sequence �d which satisfies condition

(2), for the same value of �i, regardless of the value of k, then we must specify whether they are in the

same or different finite chains. For convenience, we let kq represent the value of k from statement (2)

for dq, and we let kQ represent the value of k from statement (2) for dQ. Without loss of generality,

we assume that kq ≤ kQ. We have the following:

(9) ∃t f
kQ−kq

t (dq) = dQ

(10) ∀t f
kQ−kq

t (dq) �= dQ

Additionally, if we have more than one element, dq and dQ, in our sequence �d which satisfies

condition (4), regardless of the value of k, then we must specify whether they are in the same or

different ω∗-orbits. Let kq represent the value of k from statement (4) for dq, and let kQ represent

the value of k from statement (4) for dQ, and without loss of generality, assume that kq ≥ kQ. We

have the following:

(11) ∃t f
kq−kQ

t (dq) = dQ

(12) ∀t f
kq−kQ

t (dq) �= dQ

It is clear that (2) and (4) as written are Σ0
2 statements. We know from Theorem 2.4 that

statements (1), (3), and (5) - (8) are all Σ0
1 statements, and hence are also Σ0

2 statements. Examining

49

(9)-(12), we see that (9) and (11) are Σ0
1 statements, and (10) and (12) are Π0

1 statements, hence

they are all also Σ0
2 statements. Then the Σ0

2 Scott family for A consists of appropriate conjunctions

of (1)-(12). As defined, this is clearly a countable family. To complete the proof, we need only show

that given two sequences, �d and �e, in A, if they satisfy the same Scott formula, then there exists an

automorphism, h, such that h(�d) = �e. Below we begin by defining a partial function, h.

h(x) =

x if x is in Z-orbit, ω-orbit

x if x is in cycle or ω∗-orbit, or finite chain distinct from �d and �e

f j(eq) if x is in a k-cycle and x = f j(dq) for some j < k

f j(eq) if x is in finite chain and x = f j(dq) for some j < �i − k

where �i, k are as in (2)

y s.t. f j(y) = eq if x is in finite chain and f j(x) = dq for some 0 < j < k

where k is as in (2)

f j(eq) if x is in ω∗-orbit, and x = f j(dq) for some j ≤ k

where k is as in (4)

y s.t. f j(y) = eq if x is in ω∗-orbit, and f j(x) = dq for some j > 0

We then extend h in the same way as we did in Lemma 3.3 and Lemma 3.4. As before, it is easy to

see that h then defines the desired automorphism.

Now that we have done the initial setup work, we can continue on to prove the remaining two

cases of relative ∆0
2-categoricity. In the first, we allow for possibly infinitely many ω-orbits. And in

the final, we allow for possibly infinitely many Z-orbits.

Lemma 3.6. If A = (A, f) is a partial computable injection structure with finitely many Z-orbits,

finitely many ω∗
-orbits and finite chain orbits of only finitely many sizes, then A is relatively ∆0

2-

categorical.

Proof. Again, the proof follows closely that of Lemma 3.5, with some slight modifications. Let

A = (A, f) be a partial computable injection structure with finitely many Z-orbits and ω∗-orbits,

and finite chain-orbits as follows:

• n ω∗-orbits with representatives b1, . . . , bn s.t. bi /∈ dom(f)

50

• l Z-orbits with representatives z1, . . . , zl s.t. Of (zi) �= Of (zj) for i �= j

• finite chain-orbits only of sizes �1, . . . , �p

To create our Scott family, we take (1) and (4)-(8) to be the same as in Theorem 2.4. We take (2),

(9), and (10) to be the same as in Lemma 3.5. We replace (3), (11), and (12) as follows, assuming

kq ≤ kQ.

(3) ∃a∃t1∃t2∀b∀s
��
fs(b) �= a

�
∧

�
f �
t2(a) ↓

�
∧

�
fk
t1(a) = dq

��
(for some fixed k ≥ 0)

(11) ∃t f
kQ−kq

t (dq) = dQ

(12) ∀t f
kQ−kq

t (dq) �= dQ

We construct h similarly and the rest follows as before.

Lemma 3.7. If A = (A, f) is a partial computable injection structure with finitely many ω-orbits,

finitely many ω∗
-orbits, and finite chain orbits of only finitely many sizes, then A is relatively ∆0

2-

categorical.

Proof. Let A = (A, f) be a partial computable injection structure with finitely many ω-orbits and

ω∗-orbits, and finite chain-orbits as follows:

• m ω-orbits with representatives a1, . . . , am s.t. ai /∈ range(f)

• n ω∗-orbits with representatives b1, . . . , bn s.t. bi /∈ dom(f)

• finite chain-orbits only of sizes �1, . . . , �p

To create our Scott family, we take (1), (3), (4), (7), and (8) to be the same as in Theorem 2.4. We

take (2), (9), and (10) to be the same as in Lemma 3.5. We replace (5) as follows.

(5) ∃t∀k∀s
��
f �
t (dq) ↓

�
∧
�
fk
s (ai) �= dq

�
∧
�
fk
s (dq) �= bj

��
(for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n})

Now in (5) if we have more than one element in our sequence �d which meets this condition, we

must specify whether they are in the same Z-orbit, or different Z-orbits. This is accomplished by

replacing (6) as follows, and adding a new formula (11).

(6) ∃t f
j
t (dq) = dQ (for some fixed j ∈ N)

(11) ∀l∀t
�
f l
t(dq) �= dQ ∧ f l

t(dQ) �= dq

�

51

The Σ0
2 Scott family then consists of appropriate combinations of (1)-(11). We construct h

similarly and the rest follows as before.

This concludes the proof of Theorem 3.2. Since we know that relative ∆0
2-categoricity implies

∆0
2-categoricity, we have the following corollary.

Corollary 3.8. If A = (A, f) is a partial computable injection structure with at least three of the

following four types of orbits:

• finitely many Z-orbits

• finitely many ω-orbits

• finitely many ω∗
-orbits

• finite chain orbits of finitely many sizes

then A is ∆0
2-categorical.

We now show that if we restrict ourselves to partial injection structures which consist of only

ω-orbits, ω∗-orbits, and cycles, these structures are also relatively ∆0
2-categorical.

Theorem 3.9. If A = (A, f) is a partial computable injection structure with no Z-orbits and no

finite chain orbits, then A is relatively ∆0
2-categorical.

Proof. Let A = (A, f) be a partial computable injection structure with no Z-orbits and no finite

chains. That is, A consists only of cycles, ω-orbits, and ω∗-orbits. We again build a Σ0
2 Scott family

to show that A is relatively ∆0
2-categorical. To do so, let �d = d0, . . . , dr be a sequence in A. Then,

∀q ≤ r, dq is either part of a cycle, an ω-orbit, or an ω∗-orbit. This corresponds to one of the

following:

(1) ∃t fk
t (dq) = dq (for some fixed, minimal k > 0)

(2) ∃a∃s∀b∀t ft(b) �= a ∧ fk
s (a) = dq (for some fixed k ≥ 0)

(3) ∃b∃s∀t ft(b) ↑ ∧ fk
s (dq) = b (for some fixed k ≥ 0)

We note that if we have more than one element, dq and dQ, in our sequence �d which satisfies

condition (1) for the same value of k, then we must specify whether they are in the same or different

cycles. This is accomplished with the following:

52

(4) ∃t f
j
t (dq) = dQ (for some fixed j < k)

(5) ∀j < k ∃t f
j
t (dq) ↓�= dQ

Similarly, if we have more than one element, dq and dQ, in our sequence �d which satisfies condition

(2), regardless of the value of k, then we must specify whether they are in the same or different ω-

orbits. For convenience, we let kq represent the value of k from statement (2) for dq, and we let

kQ represent the value of k from statement (2) for dQ. Without loss of generality, we assume that

kq ≤ kQ. We have the following:

(6) ∃t f
kQ−kq

t (dq) = dQ

(7) ∀t f
kQ−kq

t (dq) �= dQ

Finally, if we have more than one element, dq and dQ, in our sequence �d which satisfies condition

(3), regardless of the value of k, then we must again specify whether they are in the same or different

ω∗-orbits. We again let kq represent the value of k from statement (3) for dq and kQ represent the

value of k from statement (3) for dQ. Without loss of generality, we assume that kq ≥ kQ. We have

the following:

(8) ∃t f
kq−kQ

t (dq) = dQ

(9) ∀t f
kq−kQ

t (dq) �= dQ

We take our Scott family for A to be appropriate conjunctions of (1)-(9). As defined, this is

clearly a countable family. Additionally, it is clear that (1)-(9) are all Σ0
2 statements (expanding (1)

as in Theorem 2.4). Therefore we have a Σ0
2 Scott family. We now need only show that given two

sequences �d and �e in A that satisfy the same Scott sentence, then there is an automorphism h which

takes �d to �e. This is accomplished by first defining a partial function, h, as follows:

h(x) =

x if x is in cycle, or ω-orbit, or ω∗-orbit distinct from �d and �e

f j(eq) if x is in a k-cycle and x = f j(dq) for some j < k

f j(eq) if x is in ω-orbit, and x = f j(dq) for some j ≥ k (k is as in (2))

y s.t. f j(y) = eq if x is in ω-orbit, and f j(x) = dq for some j < k(k is as in (2))

f j(eq) if x is in ω∗-orbit, and x = f j(dq) for some j ≤ k (k is as in (3))

y s.t. f j(y) = eq if x is in ω∗-orbit, and f j(x) = dq for some j > 0

53

We then extend h in a similar manner as in Lemma 3.5, taking this time cycles to cycles, ω∗-

orbits to ω∗-orbits, and ω-orbits to ω-orbits, ensuring that we map the beginnings/ends of the ω-

and ω∗-orbits appropriately. Then, as before it is easy to see that once extended, h defines the

required automorphism.

Since relative ∆0
2-categoricity implies ∆0

2-categoricity, the following corollary is immediate.

Corollary 3.10. If A = (A, f) is a partial computable injection structure with no Z-orbits and no

finite chain orbits, then A is relatively ∆0
2-categorical.

We now have a quite useful classification of types of partial injection structures which are ∆0
2-

categorical. The next natural question is: are these the only types of partial injection structures

which are ∆0
2-categorical? In the following section, we examine what happens in the other cases.

3.2 Non-∆0
2-Categorical Partial Injection Structures

In this section, we explore types of partial injection structures which are not ∆0
2-categorical. In

particular, we investigate the partial injection structures which were not covered by Theorems 3.2

and 3.9. The cases which we have not yet discussed are:

• Infinitely many Z-orbits and . . .

– infinitely many ω-orbits, or

– infinitely many ω∗-orbits

• Infinitely many sizes of finite chains and . . .

– infinitely many ω∗-orbits, or

– infinitely many ω-orbits, or

– infinitely many Z-orbits

We begin by noting the work done by Cenzer, Harizanov, and Remmel on ∆0
2-categoricity of

computable injection structures. As part of proving Theorem 3.1, they obtained the following result.

Theorem 3.11 (Cenzer Harizanov, and Remmel, [7]). Let A = (A, f) be a computable injection

structure with infinitely many ω-orbits and infinitely many Z-orbits. Then A is not ∆0
2-categorical.

Since ω-orbits and Z-orbits are the only types of infinite orbits in injection structures, we easily

extend the theorem to account for ω∗-orbits in partial injection structures.

54

Theorem 3.12. If A is a partial computable injection structure with infinitely many Z-orbits and

either infinitely many ω-orbits or infinitely many ω∗
-orbits and no other types of orbits, then A is

not ∆0
2-categorical.

Proof. For infinitely many Z- and ω-orbits, the proof follows the same as in [7]. For infinitely many

Z- and ω∗-orbits, we simply modify the construction in the proof given in [7]. Instead of attaching

to the ends of the orbits to create ω-orbits, we instead attach to the beginnings of the orbits to

create ω∗-orbits.

We now move on to examine how ∆0
2-categoricity is affected by finite chain orbits. Specifically

when our partial injection structure has infinitely many sizes of finite chains. We make use of the

following lemma in our constructions. Note that the concepts presented here are mostly standard

(see [42], for instance), with one small addition which will be necessary for our later proofs.

Lemma 3.13. Let C be some Σ0
2 set. Then there exists a total computable function F : N × N →

{0, 1} such that ∀x {s : F (x, s) = 0} is infinite, and such that:

x ∈ C ⇐⇒ {s : F (x, s) = 1} is finite

Proof. Let C be some Σ0
2 set. First, we note that the set Fin

defn
= {e : We is finite} is well-known to

be Σ0
2-complete (see [42]). Therefore C ≤1 Fin, and there exists a 1-reduction, f̃ : C → Fin such

that:

x ∈ C ⇐⇒ f̃(x) ∈ Fin ⇐⇒ Wf̃(x) is finite

For a given x, using standard convention (see [42]) we can enumerate Wf̃(x) in stages so that at each

finite stage, s:

• {0, 1, . . . , s− 1} ⊆ Wf̃(x),s

• Wf̃(x),s ⊆ Wf̃(x),s+1, and

• card(Wf̃(x),s+1 −Wf̃(x),s) ≤ 1

For our purposes, we wish to alter this standard convention just slightly. This is the one addition

which will be necessary for our later proofs. We wish to replace the final condition, and instead

of enumerating at most one new element into Wf̃(x),s at every stage, s, we wish to enumerate at

most one new element into Wf̃(x),s at every other stage, s. We replace the final condition with the

following:

55

• card(Wf̃(x),s+2 −Wf̃(x),s) ≤ 1 (�)

We now complete the details of the proof. We note that we add an element to Wf̃(x) at stage

s + 1 ⇐⇒ Wf̃(x),s �= Wf̃(x),s+1. And we also note that our final (new) condition gives us that

Wf̃(x),s �= Wf̃(x),s+1 =⇒ Wf̃(x),s+1 = Wf̃(x),s+2. We now define the function F : N × N → {0, 1}

as follows:

F (x, s) =

0 if Wf̃(x),s = Wf̃(x),s+1

1 if Wf̃(x),s �= Wf̃(x),s+1

Since we add at most one new element into Wf̃(x),s at every other stage, s, this means that there

are infinitely many stages, s, for which we do not add any new elements to Wf̃(x). Specifically, there

are infinitely many stages, s, for which Wf̃(x),s = Wf̃(x),s+1, and hence there are infinitely many s

for which F (x, s) = 0. Therefore, for any given x, {s : F (x, s) = 0} is infinite.

Additionally, for any e, we know that We finite ⇐⇒ there are only finitely many stages, s, where

we add only one element to Wf̃(x) ⇐⇒ only finitely many s for which We,s �= We,s+1. Therefore,

applying this back to our function F and our set C gives us:

x ∈ C ⇐⇒ f̃(x) ∈ Fin ⇐⇒ Wf̃(x) finite

⇐⇒ finitely many s for which Wf̃(x),s �= Wf̃(x),s+1

⇐⇒ finitely many s for which F (x, s) = 1

⇐⇒ {s : F (x, s) = 1} is finite

Finally, we note that the function F is indeed total computable. Given x and s, we first simply

calculate f̃(x). This is a total computable function since f̃ is a 1-reduction. Then we find Wf̃(x) and

run the enumeration of Wf̃(x) for s + 1 steps. We know (see [42]) that finding Wf̃(x) and running

it’s enumeration for a fixed number of steps is a computable process that finishes in a finite amount

of time. Then we check whether Wf̃(x),s = Wf̃(x),s+1 or Wf̃(x),s �= Wf̃(x),s+1, and we output 0 or 1

accordingly. Therefore F is a total computable function, as desired.

We are now ready to explore partial computable injection structures with infinitely many sizes

of finite chain orbits. We begin first by examining the case where our partial injection structure A

has infinitely many n-chains for every natural number n. (That is, A has infinitely many 1-chains,

and infinitely many 2-chains, and infinitely many 3-chains, and so on.)

56

Theorem 3.14. Let A = (A, f) be a partial computable injection structure with infinitely many

ω∗
-orbits, infinitely many finite chains of every size, and no other types of orbits. Then A is not

∆0
2-categorical.

Proof. First, we assume that A = (N− {0}, f), and that A has infinitely many ω∗-orbits, infinitely

many finite chains of every size, no other types of orbits. Additionally, we assume that the set of all

elements in ω∗-orbits is computable. (If not, we assume that our given structure is ∆0
2-isomorphic

to some such A, and proceed. Note that if this is not the case, then we are done – our structure

cannot be ∆0
2-categorical.)

Our goal will be to build some partial computable injection structure B = (N − {0}, g) with

infinitely many ω∗-orbits and infinitely many finite chains of every size, but in which the set of all

elements in ω∗-orbits under g is not ∆0
2. This will give us that B � A, but B is not ∆0

2-isomorphic to

A (since if it were we would have a ∆0
2-function applied to a computable set, yielding an isomorphic

set that is not ∆0
2). Hence A will not be ∆0

2-categorical.

Let C be some Σ0
2 set which is not ∆0

2. By Lemma 3.13 there exists some F : N × N → {0, 1}

such that:

(i) ∀x {s : F (x, s) = 0} is infinite

(ii) x ∈ C ⇐⇒ {s : F (x, s) = 1} is finite

Fix some such C and some such F . We will build g up in stages, gs.

stage 0: We build one single 1-chain by defining g0 as follows:

g0(1) ↑

stage s-1: (inductive assumption) At the end of stage s− 1 we have the following:

• Ogs−1

�
(2i+ 1)2(i+1)n

�
is defined ∀i, n < s

• For each 2i+1 (with i < s), at most one orbit of (2i+1)2(i+1)n is marked. (Note however

that that single orbit could contain (2i+ 1)2(i+1)n for many such n’s.)

• gs−1 is defined as follows ∀i, n < s:

gs−1

�
(2i+ 1)2(i+1)n

�
= (2i+ 1)2(i+1)n+1

gs−1

�
(2i+ 1)2(i+1)n+1

�
= (2i+ 1)2(i+1)n+2

...

gs−1

�
(2i+ 1)2(i+1)n+(i−1)

�
= (2i+ 1)2(i+1)n+i

gs−1

�
(2i+ 1)2(i+1)n+i

�
↓ ⇐⇒ F (i, n) = 1

57

stage s: We extend gs−1 as follows.

• For i = s, create s + 1 finite chains of size i + 1 by multiplying by 2 as needed. That is

define gs as follows for each n ∈ {0, 1, . . . , s}:

gs

�
(2i+ 1)2(i+1)n

�
= (2i+ 1)2(i+1)n+1

gs

�
(2i+ 1)2(i+1)n+1

�
= (2i+ 1)2(i+1)n+2

...

gs

�
(2i+ 1)2(i+1)n+(i−1)

�
= (2i+ 1)2(i+1)n+i

gs

�
(2i+ 1)2(i+1)n+i

�
↑

• For each i < s, create one additional finite chain of size i+ 1 by multiplying by 2. That

is, for each i < s and n = s define the following:

gs

�
(2i+ 1)2(i+1)n

�
= (2i+ 1)2(i+1)n+1

gs

�
(2i+ 1)2(i+1)n+1

�
= (2i+ 1)2(i+1)n+2

...

gs

�
(2i+ 1)2(i+1)n+(i−1)

�
= (2i+ 1)2(i+1)n+i

gs

�
(2i+ 1)2(i+1)n+i

�
↑

• For each i, t ≤ s, calculate F (i, t). If F (i, t) = 0 then do nothing. If F (i, t) = 1 then do

the following:

– Take the entire orbit of (2i+ 1)2(i+1)t and mark it. (Note that we are marking it as

a potential ω∗-orbit.)

– If no other orbits of (2i + 1)2(i+1)n is marked for any n thus far (note that we have

only built orbits to include up through n = 0, 1, . . . , s at this point), then do nothing.

– If there exists an orbit such that (2i + 1)2(i+1)n is marked for some n ≤ s, then

take the entire orbit of (2i+ 1)2(i+1)t and attach it to the beginning of the orbit for

(2i+1)2(i+1)n. That is, let a be the unique element of Ogs

�
(2i+1)2(i+1)n

�
such that

a /∈ range(gs), and define gs

�
(2i+ 1)2(i+1)t+i

�
= a. Leave the entire orbit marked.

Note: this attaches Ogs

�
(2i+ 1)2(i+1)t

�
to Ogs

�
(2i+ 1)2(i+1)n

�
, which gives us that

Ogs

�
(2i+ 1)2(i+1)t

�
= Ogs

�
(2i+ 1)2(i+1)n

�
. Therefore at the end of this step of this

stage we will have at most one orbit marked for each 2i+ 1, even though this single

orbit could contain (2i+ 1)2(i+1)n for several n’s.

We let g = lims gs. In this way we get that Og

�
(2i+1)2(i+1)t

�
is an ω∗-orbit ⇐⇒ {s : F (i, s) = 1}

is infinite and F (i, t) = 1 ⇐⇒ i /∈ C and F (i, t) = 1.

58

We see that g is indeed a partial computable function since the above process for each gs is a

computable process at each stage s, and once gs(x) ↓= y, then ∀t > s, gt(x) ↓= y. Explicitly, given

input x, to determine g(x) we do the following.

• We first determine the “even” and “odd” parts of the prime decomposition of x. That is, we

find i and k such that x = (2i+ 1)2k.

• We then run the above process for as many stages as needed until gs((2i+ 1)2k) ↓= y.

• Once gs((2i+ 1)2k) ↓= y, then we have g(x) ↓= y.

Note that this process may compute forever searching for a stage, s, where gs(x) ↓. This is ok,

however, as we only need g to be partial computable.

Therefore B = (N − {0}, g) is a partial computable injection structure. We now check that B

has infinitely many ω∗-orbits and infinitely many finite chain orbits of every size. We do this by

examining what happens for F (i, s) = 0 and F (i, s) = 1 when i ∈ C and i /∈ C, based on our

construction and the results of Lemma 3.13:

• i ∈ C =⇒ {s : F (i, s) = 1} is finite =⇒ infinitely many s’s for which F (i, s) = 0:

If there are infinitely many s’s for which F (i, s) = 0 then, by our construction, this gives us

that there are infinitely many points at which we leave (2i + 1)2(i+1)s alone and do not add

its orbit to any other orbit. Since each (2i+ 1)2(i+1)s is created as a finite chain of size i+ 1

for each s, if we do not add its orbit to any other orbit, this means we leave it as a finite chain

of size i+ 1 throughout the remainder of the construction. This gives us that: for each i ∈ C

there are infinitely many finite chains of size i+ 1.

• i ∈ C =⇒ {s : F (i, s) = 1} is finite =⇒ finitely many s’s for which F (i, s) = 1:

This gives us only finitely many stages during which we add the orbit of (2i + 1)2(i+1)s to

another orbit (namely the orbit for (2i+ 1)2(i+1)n for some n). This gives us one giant finite

chain of size �i(i+ 1) (where �i simply = the number of s’s for which F (i, s) = 1). Therefore:

for each i ∈ C, there is one finite chain of size �i(i+ 1).

Note: since we wish in the end for B to have infinitely many finite chains of every size, this

will not adversely affect our construction.

• i /∈ C =⇒ {s : F (i, s) = 1} is infinite =⇒ infinitely many s’s for which F (i, s) = 1:

Therefore there are infinitely many stages where we add the orbit of (2i+1)2(i+1)s to another

orbit (namely the orbit for (2i + 1)2(i+1)n for some n). Therefore: for each i /∈ C we get one

ω∗-orbit, namely Og

�
(2i+ 1)2(i+1)s

�
for some s such that F (i, s) = 1.

59

• i /∈ C =⇒ (by Lemma 3.13) {s : F (i, s) = 0} is also infinite =⇒ infinitely many s’s for

which F (i, s) = 0:

This yields infinitely stages for which we leave (2i+1)2(i+1)s alone and do not add its orbit to

any other orbit. Therefore: for each i /∈ C , there are infinitely many finite chains of size i+1.

Taken together we have that for each i ∈ C there are infinitely many finite chains of size i+ 1, and

for each i /∈ C there are infinitely many finite chains of size i + 1. Therefore ∀i there are infinitely

many finite chains of size i + 1, and since the size of any finite chain must necessarily be ≥ 1, this

yields that B therefore has infinitely many finite chains of every size. Additionally, for each i /∈ C

we get a single ω∗-orbit. Since C is not computable, there are infinitely many i /∈ C, and hence B

has infinitely many ω∗-orbits. Therefore B � A.

Let Aω∗ = the set of all elements in ω∗-orbits under f , and Bω∗ = the set of all elements in

ω∗-orbits under g. By assumption, under A, Aω∗ is computable. In B, since Og

�
(2i + 1)2(i+1)s

�
is

an ω∗-orbit ⇐⇒ i /∈ C, this gives the following:

x ∈ ω
∗-orbit ⇐⇒ for some n

��
x = (2i+ 1)2(i+1)n

�
∨

�
x = (2i+ 1)2(i+1)n+1

�

∨ · · · ∨
�
x = (2i+ 1)2(i+1)n+i

��
∧

�
F (i, n) = 1

�
∧

�
i ∈ C̄

�

Bω∗ = {(2i+ 1)2(i+1)n+m : n ∈ N ∧ m ≤ i ∧ F (i, n) = 1 ∧ i ∈ C̄}

≡T C

Therefore, since C is a Σ0
2 set which is not ∆0

2, Bω∗ =the set of all elements of ω∗-orbits under

g is a Π0
2 set which is not ∆0

2. Therefore there cannot be a ∆0
2-isomorphism h : A → B. If there

were such an isomorphism, we would have a computable set, Aω∗ , taken via a ∆0
2-function, h, which

would yield a ∆0
2 set Bω∗ – a contradiction. (Taken another way, if there were such an isomorphism,

h, we could determine whether x ∈ Bω∗ given a 0
�-oracle – simply ask whether h-1(x) ∈ Aω∗– and

hence Bω∗ would be a ∆0
2-set, a contradiction). Therefore B cannot be ∆0

2-isomorphic to A, and

hence A is not ∆0
2-categorical.

Note that we can generalize the above case to infinitely many of any other type of infinite orbit

– rather than adding finite chains to the beginning as we did for ω∗-orbits in the construction of the

proof for Theorem 3.14, we simply add finite chains to the end (for ω-orbits) or to alternating both

60

sides (for Z-orbits). This yields the following corollaries.

Corollary 3.15. Let A = (A, f) be a partial computable injection structure with infinitely many

ω-orbits, infinitely many finite chains of every size, and no other types of orbits. Then A is not

∆0
2-categorical.

Corollary 3.16. Let A = (A, f) be a partial computable injection structure with infinitely many

Z-orbits, infinitely many finite chains of every size, and no other types of orbits. Then A is not

∆0
2-categorical.

We can also generalize the case given in Theorem 3.14 to situations where A has infinitely

many finite chains with sizes of every multiple of k for some k ∈ N. That is, for some k ∈ N, A

has infinitely many k-chains, infinitely many 2k-chains, infinitely many 3k-chains, etc. We simply

modify the above construction so that instead of building finite chains in sizes of 1, 2, 3, etc, we build

finite chains in sizes of 1k, 2k, 3k, etc. If during the construction we stop and do not attach any

more chains to a given orbit, this will not adversely affect the construction. We have only attached

finite chains in multiples of k, so we are left with a finite chain with size of some multiple of k. Since

there are infinitely many finite chains of size every multiple of k, additional ones will not adversely

affect the structure.

This generalization serves as motivation for the following theorem, which says we can in fact

generalize even one step further to consider infinitely many finite chains coming from any c.e. set K

of arbitrarily large sizes.

Theorem 3.17. Let A = (A, f) be a partial computable injection structure, and let K be some

infinite c.e. set not containing 0. If A has infinitely many finite chain orbits of every size in K, and

A has infinitely many infinite orbits (either infinitely many ω∗
-, or infinitely many ω-, or infinitely

many Z-orbits), and no other types of orbits, then A is not ∆0
2 categorical.

Proof. We first examine the case where A has infinitely many ω∗-orbits. We will later generalize

this to the cases with infinitely many ω∗-orbits or infinitely many Z-orbits. Assume, then, that

A = (N − {0}, f), and that A has infinitely many ω∗-orbits, infinitely many finite chains of sizes

coming from some infinite c.e. set K, and no other types of orbits. Furthermore, we assume that

the set of all elements in ω∗-orbits is computable. (If not, we assume that our given structure is

∆0
2-isomorphic to some such A, and proceed. Note that if this is not the case, then we are done – our

structure cannot be ∆0
2-categorical.) Furthermore, we let K have enumeration K = {k0, k1, k2, . . .},

and since 0 /∈ K, then 0 �= ki ∀i.

61

Our goal will be to build some partial computable injection structure B = (N − {0}, g) with

infinitely many ω∗-orbits and infinitely many finite chains with sizes coming from K = {ki}i≥0, but

in which the set of all elements in ω∗-orbits under g is not ∆0
2. This will give us that B � A, but

B is not ∆0
2-isomorphic to A (since if it were we would have a ∆0

2-function applied to a computable

set, yielding an isomorphic set that is not ∆0
2). Hence A will not be ∆0

2-categorical.

Let C be some Σ0
2 set which is not ∆0

2. By Lemma 3.13 there exists some F : N × N → {0, 1}

such that:

(i) ∀x {s : F (x, s) = 0} is infinite

(ii) x ∈ C ⇐⇒ {s : F (x, s) = 1} is finite

Fix some such C and some such F . We will build g up in stages, gs.

stage 0: We build one single k0-chain by defining g0 as follows for i = 0 and n = 0:

g0

�
(2i+ 1)2k0n

�
= (2i+ 1)2k0n+1

g0

�
(2i+ 1)2k0n+1

�
= (2i+ 1)2k0n+2

...

g0

�
(2i+ 1)2k0n+(k0−2)

�
= (2i+ 1)2k0n+(k0−1)

g0

�
(2i+ 1)2k0n+(k0−1)

�
= ↑

In other words, we have:

g0(1) = 2, g0(2) = 4, . . ., g0(2k0−2) = 2k0−1, g0(2k0−1) = ↑

Let j0,0 = 0

stage s− 1: (inductive assumption) At the end of stage s− 1 we have the following:

• There are s-many finite chains of size ki for all i ≤ s− 1.

• Furthermore, we know which number ki-chain each of the s many ki-chains is, as we have

kept track of it with ji,t so that (2i + 1)2ji,0 marks the beginning of the 0th ki-chain

created during the construction, (2i + 1)2ji,1 marks the beginning of the first ki-chain

created during the construction, and so on. ji,t has been defined for all i, t ≤ s− 1.

• For each (2i + 1)2j , at most one orbit of (2i + 1)2j is marked. (Note however that that

single orbit could contain (2i+ 1)2j for many such j’s.)

• For each i ∈ {0, 1, . . . , s−1} we have “specified” gs−1

�
(2i+1)2n

�
for only a finite number

of n’s thus far. Note that by “specified” we mean that this construction has specifically

62

stated whether gs−1

�
(2i+1)2n

�
↓= y or whether gs−1

�
(2i+1)2n

�
↑. If we have said that

gs−1

�
(2i + 1)2n

�
↑, we still may make it halt at some later stage. Additionally, when

we talk about some gs−1

�
(2i + 1)2n

�
which has not been “specified”, we mean that we

haven’t said anything about gs−1

�
(2i + 1)2n

�
yet in the construction, not even possibly

that gs−1

�
(2i+ 1)2n

�
↑.

stage s: We extend gs−1 as follows.

• For i = s, create (s+ 1)-many finite chains of size ki by taking (2i+ 1) and multiplying

by 2 as needed. Specifically, for each n ∈ {0, 1, . . . , s}, define gs as follows:

gs

�
(2i+ 1)2kin

�
= (2i+ 1)2kin+1

gs

�
(2i+ 1)2kin+1

�
= (2i+ 1)2kin+2

...

gs

�
(2i+ 1)2kin+(ki−2)

�
= (2i+ 1)2kin+(ki−1)

gs

�
(2i+ 1)2kin+(ki−1)

�
= ↑

Set ji,n = kin for i = s and n ∈ {0, 1, . . . , s}.

• For each i < s, create one additional finite chain of size ki by taking the smallest such j

for which gs

�
(2i + 1)2j

�
has not yet been specified in the construction, and multiplying

by 2 (ki − 1)-many times:

gs

�
(2i+ 1)2j

�
= (2i+ 1)2j+1

gs

�
(2i+ 1)2j+1

�
= (2i+ 1)2j+2

...

gs

�
(2i+ 1)2j+(ki−2)

�
= (2i+ 1)2j+(ki−1)

gs

�
(2i+ 1)2j+(ki−1)

�
= ↑

Set ji,s = j.

• For each i, t ≤ s, calculate F (i, t). If F (i, t) = 0 then do nothing. If F (i, t) = 1 then do

the following:

– Take the entire orbit of (2i+ 1)2ji,t and mark it. (Note that we are marking it as a

potential ω∗-orbit.)

– If no other orbits of (2i+1)2j are marked for any j specified by the construction thus

far, then do nothing. This completes the stage for this F (i, t) = 1.

– If there exists an orbit such that (2i + 1)2j is marked for some j, then take the

entire orbit of (2i+1)2ji,t and attach it to the beginning of the already marked orbit

63

for (2i + 1)2j . That is, let a be the unique element of Ogs

�
(2i + 1)2j

�
such that

a /∈ range(gs), and define gs

�
(2i+ 1)2ji,t+ki−1

�
= a. Leave the entire orbit marked.

Note: at the end of this step of the stage, we will have at most one orbit marked for

(2i+ 1)j , even though this single orbit could contain many such j’s.

– Now, for the single marked orbit for (2i+1)ji,t , determine its size. This is computably

possible, as the marked orbit thus far was created by a finite number of computable

steps, and the marked orbit is itself finite. Let card
�
Ogs

�
(2i+ 1)2ji,t

��
= .

– Start searching through K = {ki}i≥0 until we find the smallest r such that ≤ kr.

Note that K is infinite, meaning it contains arbitrarily large kr’s, meaning at some

finite point we will indeed find kr such that ≤ kr.

– If = kr, then do nothing. This completes the stage for this F (i, t) = 1.

– If < kr, then we will add kr − more elements from the 2n multiples of (2i + 1)

to make Ogs

�
(2i + 1)2ji,t

�
have size kr. Let j be the smallest number such that

gs

�
(2i+ 1)2j has not yet been specified by our construction. Then let:

gs

�
(2i+ 1)2j

�
= (2i+ 1)2ji,t

gs

�
(2i+ 1)2j+1

�
= (2i+ 1)2j

...

gs

�
(2i+ 1)2j+kr− −1

�
= (2i+ 1)2j+kr− −2

This gives that card
�
Ogs

�
(2i+ 1)2ji,t

��
= kr

We let g = lims gs. In this way we get that Og

�
(2i+1)2ji,t

�
is an ω∗-orbit ⇐⇒ {s : F (i, s) = 1} is

infinite and F (i, t) = 1 ⇐⇒ i /∈ C and F (i, t) = 1.

We see that g is indeed a partial computable function since the above process for each gs is a

computable process at each stage s, and once gs(x) ↓= y, then ∀t > s, gt(x) ↓= y. Explicitly, given

input x, to determine g(x) ...

• We first determine the “even” and “odd” parts of the prime decomposition of x. That is, we

find i and j such that x = (2i+ 1)2j .

• We then run the above process for as many stages as needed until gs((2i+ 1)2j) ↓= y.

• Once gs((2i+ 1)2j) ↓= y, then we have g(x) ↓= y.

Note that this process may compute forever searching for a stage, s, where gs(x) ↓. This is ok,

however, as we only need g to be partial computable.

64

Therefore B = (N − {0}, g) is a partial computable injection structure. We now check that B

has infinitely many ω∗-orbits and infinitely many finite chain orbits of every size in K. We do this

by examining what happens for F (i, s) = 0 and F (i, s) = 1 when i ∈ C and i /∈ C, based on our

construction and the results of Lemma 3.13:

• ∀i (regardless of whether i ∈ C or i /∈ C), there are infinitely many s’s for which F (i, s) = 0

because of the additional condition we added in Lemma 3.13. Therefore in our construction,

there are infinitely s’s for which we do nothing to the orbit of (2i+1)2ji,s . Since each (2i+1)2ji,s

was created as a finite chain of size ki this gives us infinitely many finite chains of size ki.

Therefore for each i there are infinitely many finite chains of size ki.

• i ∈ C =⇒ {s : F (i, s) = 1} is finite =⇒ finitely many s’s for which F (i, s) = 1:

This gives us only finitely many stages during which we add the orbit of (2i+1)2ji,s to another

orbit. Each time we do this, we ensure that we have a finite chain of size kr for some kr ∈ K.

Therefore, on the final time that we add the orbit of (2i + 1)2ji,s to another orbit, we have

created one additional finite chain of size kr for some r. Therefore: for each i ∈ C, there is

one additional finite chain of size kr for some r.

Note: since we already determined that there exist infinitely many finite chains of size ki ∀i,

this additional finite chain of size kr changes nothing – there are still infinitely many finite

chains of size ki ∀i.

• i /∈ C =⇒ {s : F (i, s) = 1} is infinite =⇒ infinitely many s’s for which F (i, s) = 1:

Therefore there are infinitely many stages where we add the orbit of (2i+1)2ji,s to the orbit of

(2i+1)2ji,t for some t < s. Furthermore, when we do so, we always add the orbit of (2i+1)2ji,s

to the beginning of the other orbit. Therefore: for each i /∈ C we get one ω∗-orbit, namely

Og

�
(2i+ 1)2ji,s

�
for some s such that F (i, s) = 1.

Taken together we have that B has infinitely many finite chains of size ki for each i, hence infinitely

many finite chains of every size in K = {ki}i≥0. Additionally, for each i /∈ C we get a single ω∗-

orbit. Since C is not computable, there are infinitely many i /∈ C, and hence B has infinitely many

ω∗-orbits. Therefore B � A.

Let Aω∗ = the set of all elements in ω∗-orbits under f , and Bω∗ = the set of all elements in

ω∗-orbits under g. By assumption, under A, Aω∗ is computable. In B, since Og

�
(2i+ 1)2ji,s

�
is an

65

ω∗-orbit ⇐⇒ i /∈ C, this gives the following:

Bω∗ = {x : Og(x) is ω
∗-orbit}

= {(2i+ 1)2j : i /∈ C ∧ j, s ∈ N ∧ Ogs

�
(2i+ 1)2j

�
is marked ∧ F (i, s) = 1}

≡T C

Therefore, since C is a Σ0
2 set which is not ∆0

2, Bω∗ =the set of all elements of ω∗-orbits under g is a

Π0
2 set which is not ∆0

2. Therefore there cannot be a ∆0
2-isomorphism h : A → B. If there were such

an isomorphism, we would have a computable set, Aω∗ , taken via a ∆0
2-function, h, which would

yield a ∆0
2 set Bω∗ – a contradiction. (Taken another way, if there were such an isomorphism, h, we

could determine whether x ∈ Bω∗ given a 0
�-oracle – simply ask whether h-1(x) ∈ Aω∗– and hence

Bω∗ would be a ∆0
2-set, a contradiction). Therefore B cannot be ∆0

2-isomorphic to A, and hence A

is not ∆0
2-categorical.

In the case when A has infinitely many ω-orbits or infinitely many Z-orbits instead of infinitely

many ω∗-orbits we can easily modify the above proof. For infinitely many ω-orbits, we assume

that the set of elements in ω-orbits under A is computable and we grow the marked orbits in B by

attaching to the end of the orbit, rather than to the beginning. For infinitely many Z-orbits, we

assume that the set of elements in Z-orbits under A is computable and we grow the marked orbits

in B by attaching to both sides – we can alternate stages when F (i, t) = 1, attaching first to one

side and then to the other.

3.3 ∆
0
3-Categoricity of Partial Injection Structures

Finally, we examine ∆0
3-categoricity of partial injection structures. As before, we mention first what

is already known about ∆0
3-categoricity for injection structures.

Theorem 3.18 (Cenzer, Harizanov, and Remmel, [7]). All computable injection structures are

relatively ∆0
3-categorical.

Turning our attention now to partial computable injection structures, we get a corresponding

result.

Theorem 3.19. All partial computable injection structures are relatively ∆0
3-categorical.

Proof. Let A = (A, f) be a partial computable injection structure. The proof follows easily from

Lemma 2.3, where we can see that all possible types of orbits in A have the needed classifications

66

within the arithmetical hierarchy. Specifically, we will show that A has a Σ0
3 Scott family, consisting

of Σ0
3-computable formulas.

Let �d = d0, . . . , dr be a sequence in A. Then ∀q ≤ r we have that either dq is part of a cycle, a

chain, an ω-orbit, an ω∗-orbit, or a Z-orbit. This corresponds to one of the following:

(1) ∃t fk
t (dq) = dq (for some fixed, minimal k > 0)

⇐⇒ ∃t∃t1 . . . ∃tk−1

�
fk(dq) = dq ∧

�
ft1(dq)↓ �= dq ∧ f2

t2(dq)↓ �= dq ∧ · · · ∧ f
k−1
tk−1

(dq)↓ �= dq

��

(for some fixed k > 0)

(2) ∃b∃s∀t
�
fk
s (b) = dq ∧ b /∈ range(f) ∧ fm

t (dq) ↑
�
(for some fixed k ≥ 0, m > 0 minimal)

⇐⇒ ∃b∃s∃t1 . . . ∃tm−1∀a∀t

�
fk
s (b) = dq ∧ ft(a) �= b∧ fm

t (dq) ↑

∧
�
ft1(dq)↓ �= dq ∧ f2

t2(dq)↓ �= dq ∧ · · · ∧ f
m−1
tm−1

(dq)↓ �= dq

��
(for some fixed k ≥ 0, m > 0)

(3)

�
∃b∃s

�
fk
s (b) = dq ∧ b /∈ range(f)

��
∧

�
∀j∃tf

j
t (dq)↓ �= dq

�
(for some fixed k ≥ 0)

⇐⇒ ∃b∃s∀a∀σ∀j∃t
�
fk
s (b) = dq ∧ fσ(a) �= b ∧ f

j
t (dq)↓ �= dq

�
(for some fixed k ≥ 0)

(4) ∀j∃b∃t
�
f
j
t (b) = dq

�
∧ ∀sfk

s (dq) ↑ (for some fixed, minimal k > 0)

⇐⇒ ∀s∀j∃b∃t∃t1 . . . ∃tk−1

�
f
j
t (b) = dq ∧ fk

s (dq) ↑ ∧
�
ft1(dq) ↓ �= dq ∧ f2

t2(dq) ↓ �= dq ∧ · · ·

∧ f
k−1
tk−1

(dq)↓ �= dq

��
(for some fixed k > 0)

(5)
�
∀j∃b∃tf

j
t (b) = dq

�
∧

�
∀m∃sfm

s (dq)↓ �= dq

�

⇐⇒ ∀j∀m∃b∃t∃s
�
f
j
t (b) = dq ∧ fm

s (dq)↓ �= dq

�

Similar to our previous theorems, we note that in (1) if we have more than one element in our

sequence �d which meets this condition for the same value of k, then we have to specify whether they

are in the same cycle or different cycles. Therefore for dq, dQ in our sequence �d with q �= Q and

q,Q ≤ r, if both dq and dQ satisfy the same formula (1) with the same value of k then either:

(6) ∃t f
j
t (dq) ↓= dQ (for some fixed j < k)

(7) ∀j < k ∃t f
j
t (dq) ↓�= dQ

We also note that in (5) if we have more than one element in our sequence �d which meets this

condition, then we have to specify whether they are in the same Z-orbit or different Z-orbits.

Therefore for dq, dQ in our sequence �d with q �= Q and q,Q ≤ r, if both dq and dQ satisfy the same

formula (5) then either:

(8) ∃t fk
t (dq) = dQ (for some fixed k ≥ 0)

(9) ∃t fk
t (dQ) = dq (for some fixed k ≥ 0)

67

(10) ∀k∀t (fk
t (dq)↓ �= dQ ∧ fk

t (dQ)↓ �= dq)

It is clear that (1) and (6)-(9) are Σ0
1 statements, and hence are also Σ0

3. It is also clear from the

above characterization that (2) is a Σ0
2 statement, (4) and (5) are Π0

2 statements, and (10) is a Π0
1

statement, hence all are also Σ0
3 statements. Additionally, as written above, (3) is a Σ0

3 statement.

Each formula in our Scott family of formulas will look like some combination of (1)-(10) with dq and

dQ replaced with xq and xQ respectively. This is clearly a countable family of Σ0
3 formulas, as each

of our fixed variables k and m range over N. It is easy to see that each sequence �d in A will have a

formula in this family – we simply take the appropriate combination of (1)-(10). Finally, it is also

clear that given two sequences in A which satisfy the same Scott formula in this family, then there

exists an automorphism mapping one sequence to the other.

We observe that up until this point, our results about partial injection structures seemed to

yield decidedly more “difficult” answers when compared to the corresponding results about injec-

tion structures. For computable categoricity, we had two classifications of relatively computably

categorical structures, the second of which involved certainly more intricate conditions than the

single classification for injection structures. In addition, for non-computable categoricity there were

several more cases to examine, with more intricate details to keep track of. For ∆0
2-categoricity, there

was a nice corresponding classification for partial injection structures, but for the examination of

non-∆0
2-categorical cases we had to break the results into more subcases, some of which relied upon

having orbits from at least a c.e. set. At the level of ∆0
3-categoricity, however, we see that our results

for injection structures and partial injection structures match, as the outcomes in Theorem 3.18 and

Theorem 3.19 are identical.

3.4 Index Sets of Partial Computable Injection Structures

We now wish to extend the concept of index sets to infinite partial computable injection structures,

building off of work done in [7]. We focus on structures with universe N, and we define Ae =

(N,ϕe), where ϕe is the eth partial computable function in our enumeration of all partial computable

functions. Since ϕe lists all partial computable functions, the list of all Ae’s certainly contains all

partial computable injection structures with universe N.

We wish to examine exactly when Ae corresponds to a partial computable injection structure,

so we define the index set PInj= {e : Ae is a partial computable injection structure }. Clearly Ae is

68

a partial computable injection structure ⇐⇒ ϕe is an injection. We now note the simple fact that

the property of being 1-1 is a Π0
1-statement:

ϕe is 1-1 ⇐⇒ ∀x∀y∀s∀t
�
ϕe,s(x) ↓= ϕe,t(y) =⇒ x = y

�

We take this one step further in the following theorem, which in fact gives Π0
1-completeness.

Theorem 3.20. The set PInj = {e : Ae is a partial computable injection structure } is Π0
1-complete.

Proof. As noted above, PInj = {e : ϕe is 1-1 }, and being 1-1 is a Π0
1 property. It is therefore clear

that PInj is a Π0
1 set.

To prove that PInj is Π0
1-complete we need then to show that any Π0

1 set is m-reducible to it. We

do this by showing that K ≤m PInj, where K = the complement of the Halting set = {e : ϕe(e) ↑}.

We note that due to Post’s theorem, K is itself a Π0
1-complete set, and hence we will have K ≤m

PInj =⇒ K ≡m PInj, and hence PInj will be Π0
1-complete.

To show that K ≤m PInj, we need to define an m-reduction, F , from K to PInj. That is, we

wish to define a total computable function F (x) such that x ∈ K ⇐⇒ F (x) ∈ PInj ⇐⇒ ϕF (x) is

1-1. To do this, we define a function f = ϕF (x) as follows.

f(x, s) = ϕF (x)(s) =

s+ 1 if ϕx,s(x) ↑

1 if ϕx,s(x) ↓

Clearly, f is computable for any fixed x. To calculate f(x, s), we simply calculate ϕx(x) for s-many

stages and see whether ϕx,s(x) halts. Therefore we know by the s-m-n theorem that F (x) is a total

computable function.

We now have that f = ϕF (x) defines a structure, AF (x) = (N,ϕF (x)). We examine exactly when

69

AF (x) is a partial computable injection structure.

e ∈ K =⇒ ϕe(e) ↑

=⇒ ∀s ϕe,s(e) ↑

=⇒ ∀s ϕF (e)(s) = s+ 1

=⇒ ϕF (e) is a 1-1 partial computable function

=⇒ AF (e) = (N,ϕF (e)) is a partial computable injection structure

=⇒ F (e) ∈ PInj

e ∈ K =⇒ ϕe(e) ↓

=⇒ ∃s > 0
�
ϕ(e, s) ↓ and ϕe,s−1 ↑

�

=⇒ ϕF (e)(0) = 1 and ϕF (e)(s) = 1

=⇒ ϕF (e) is not 1-1

=⇒ AF (e) = (N,ϕF (e)) is not a partial computable injection structure

=⇒ F (e) /∈ PInj

Therefore, F (K) ⊆ PInj and F (K) ⊆ PInj, and hence F yields the desired m-reduction. Therefore

K ≤m PInj, completing the proof.

3.5 Future Research

We have now considered results about relative computable categoricity for partial injection structures

in Theorems 2.4 and 2.5 and about relative ∆0
2-categoricity in Theorems 3.2 and 3.9. We have also

considered results about computable categoricity for partial injection structures in Theorems 2.7, 2.8

and 2.10 to 2.12, and about ∆0
2-categoricity in Theorems 3.12, 3.14 and 3.17 and in Corollary 3.15

and Corollary 3.16. Our goal, of course, is to completely classify all types of partial computable

injection structures in terms of computable categoricity and ∆0
2-categoricity. The aforementioned

theorems, taken together, have considered all combinations of orbits that could make up a partial

injection structures, at least in some form.

Although we have covered the big-picture situations and concepts, we have not thoroughly consid-

ered every single last situation, however. Of obvious note is a corresponding result to Theorem 2.11

70

and Theorem 2.12, where our partial computable injection structure A has finite chains of arbitrarily

large size or has infinitely many �-chains and infinitely many “≥ � ”-cycles, and furthermore those

sizes of finite chains or cycles, {ki}i>0, cannot be enumerated in a computable manner. (Recall

{ki}i>0 represents the sequence of all sizes of finite chains or of all sizes of “≥ � ”-cycles, so that A

has exactly one orbit of size ki for each i.) The case where {ki}i>0 forms a sequence which is not

even c.e. still needs to be researched, however. Furthermore, the investigation of this case will likely

require methods other than those used here. All of our proofs have relied upon building a partial

computable injection structure in stages based upon the sizes and types of orbits in the desired

structure. If the arbitrarily large sized finite chains have sizes which are not even c.e., there seems to

be no real feasible way to build such a structure up in stages. We will have to use different methods,

then, to do this.

Similarly, we may wish to examine a corresponding result to Theorem 3.17 about ∆0
2-categoricity.

The case where our partial computable injection structure has infinitely many infinite orbits of at

least one type and infinitely many finite chain orbits of every size in some non-c.e. set, K, requires

investigation. Again, we will likely have to use different methods to examine this case.

An additional item of research is the following. If we look closely at the statements and proofs

of Theorems 2.7, 2.8, 2.10 to 2.12, 3.12, 3.14 and 3.17, we see that we have discussed computable

partial injection structures with only the exact type of specified orbits, but not ones which have

both the specified types of orbits, and other types of orbits. For instance, though we have proven in

Theorem 2.8 that a partial computable injection structure whose orbits consist of infinitely many k-

chains and infinitely many m-chains is not computably categorical, we have not formally proven that

a partial computable injection structure whose orbits consist of infinitely many k-chains, infinitely

many m-chains, and some other types of orbits is not computably categorical. We hope, of course,

that the proofs of these corresponding theorems are straightforward, as they should simply build

upon the existing constructions. These proofs still require formalization, however, before we can

definitively say that computable partial injection structures with the specified types of orbits, and

additional types of orbits, are not computably categorical.

71

Chapter 4

Algorithmic Equivalence of Trees

and Nested Equivalence Structures

In this chapter we build off of work done by Calvert, Cenzer, Harizanov, and Morozov in [6] and

Cenzer, Harizanov, and Remmel in [10] in their study of equivalence structures, and off of work done

by Lempp, McCoy, Miller, and Solomon in [31] and by Miller in [36] on the computable categoricity

of trees of finite height and trees of infinite height. We will show a way to think of nested equivalence

structures as trees, and we will formally present computable methods to go back and forth between

the two. We begin first with a discussion of nested equivalence structures and trees.

4.1 Nested Equivalence Structures

An equivalence structure, A, consists of a set, A ⊆ N, and an equivalence relation, E, on A.

That is, E is a relation on A which is reflexive, symmetric, and transitive. We generally write

A = (A,E) to denote such a structure. A is said to be a computable equivalence structure if

A is a computable set and E is a computable relation. Equivalence structures can be completely

classified up to isomorphism by the sizes of their equivalence classes and the numbers of equivalence

classes of each size.

We now extend the notion of equivalence structures to include more than one equivalence relation,

each of which is nested together. Given two equivalence relations, E and R on a set A, we say that

they are nested – or more specifically that E is nested inside of R – if each equivalence class under

72

E sits inside of the corresponding equivalence class under R. That is, for each a ∈ A,

[a]E ⊆ [a]R

We sometimes use the shorthand “E ⊆ R” to represent this nesting of the equivalence classes of

each equivalence relation. Given two nested equivalence relations, E ⊆ R, we call R the coarser

equivalence relation and E the finer equivalence relation, since the equivalence classes of R are

“larger” (in the sense of subset inclusion) and result in theoretically a coarser division of A with

“fewer” equivalence classes, and the equivalence classes of E are “smaller” (in the sense of subset

inclusion) and result in theoretically a finer division of A with “more” equivalence classes. Indeed,

both E and R could have infinitely many classes each of infinite cardinality, but we still reference

them as coarser or finer in this way.

A nested equivalence structure, A = (A,E1, . . . , En), consists of a set, A, and equivalence

relations E1, . . . , En on A such that the equivalence classes of each Ei+1 are nested inside of the

equivalence classes for Ei. That is, for each a ∈ A:

[a]En ⊆ [a]En−1 ⊆ · · · ⊆ [a]E2 ⊆ [a]E1

By convention, we list the relations in our structure A from coarsest (E1), to finest (En). We some-

times callA an n-nested equivalence structure to emphasize that there are n different equivalence

relations inside of the structure. We consider here only finitely nested equivalence structures. That

is, we do not consider nested equivalence structures of the form A = (A,E1, . . . , En, . . .). We say

that A is a computable nested equivalence structure iff A,E1, . . . , En are all computable. We

can relativize this notion, so that given any nested equivalence structure, A, we say that another

structure, set, function, or relation is “A-computable” if we have an oracle for A⊕E1⊕E2 · · ·⊕En.

A nice property of computable, finitely nested equivalence structures is that we can computably

enumerate all of its equivalence classes without repetition. Let CA = the set of equivalence classes

of A without repetition. We can enumerate CA as {C0,i0 , C1,i1 , . . .}, where each member of CA is a

set of the form Cj,ij = [cj]Eij
, with cj ∈ A, and ij ∈ {1, . . . , n}.

Lemma 4.1. Let A = (A,E1, . . . , En) be a nested equivalence structure. Then CA is an A-

computable set, and furthermore we can enumerate CA without repetition.

Proof. We must give some A-computable process which will enumerate all equivalence classes of

A exactly once each. First we note that clearly A is A-computable, which means that given an

73

A-oracle, we can enumerate A as A = {a0, a1, a2, . . .} where a0 < a1 < a2 < · · · . Fix such an

enumeration of A. We also note that Ei is A-computable for i ∈ {1, . . . , n}. Below is such a process

to enumerate CA without repetition.

1. First, enumerate [a0]E1 , [a0]E2 , . . ., [a0]En into CA. (That is, c0 = a0, c1 = a0, . . ., cn−1 = a0,

i0 = 1, i1 = 2, . . ., in−1.)

2. Next, examine a1 under Ei for each i ∈ {1, . . . , n} in order, starting with i = 1.

• If a1Eia0, then do nothing. We have already enumerated the equivalence class [a1]Ei

(since [a1]Ei = [a0]Ei).

• If ¬ (a1Eia0) then enumerate the equivalence class [a1]E1 into CA.

(Note that determining whether two elements are equivalent under Ei is an A-computable

process for each i.)

3. Next, examine a2 under Ei for each i ∈ {1, . . . , n} in order, starting with i = 1.

• If a2Eia0 or a2Eia1, then do nothing. We have already enumerated the equivalence class

[a2]Ei (since a2Eia0 or a2Eia1).

• If ¬ (a2Eia0) and ¬ (a2Eia1), then enumerate the equivalence class [a2]Ei into CA.

(Note again that determining whether two elements are equivalent under Ei is anA-computable

process for each i.)

4. Continue on in this manner, comparing each ak to a0, a1, . . ., ak−1 under each of E1, . . ., En

in order. If at any point ak is Ei-equivalent to one of its predecessors, we do nothing since this

means we have already enumerated the Ei-equivalence class of ak into CA. If, on the other

hand, ak is not Ei-equivalent to any of its predecessors, we enumerate [ak]Ei into CA. Each

of the comparisons made is A-computable, and we conduct only a finite number of them for

each ak.

Therefore, each step of this process is A-computable. Additionally, we only add new elements to CA

after having first checked that we did not already add them previously. In this manner, we therefore

get an A-computable enumeration of all equivalence classes of A without repetition.

Now, we have only thus far shown that CA is A-c.e. It is not necessarily obvious at this point that

the above algorithm indeed yields an A-computable set. To show that CA is in fact A-computable,

we need to show that there exists an algorithm which can computably tell us whether a given

74

equivalence class is in CA. To do this, we first turn CA into a set of natural numbers by choosing

appropriate indices. We abuse notation slightly and identify the set CA as defined above with the

set of indices defining CA:

CA = {�j, i� : [aj]Ei ∈ above algorithmic enumeration of CA}

= {�j, i� : aj is the smallest elt of [aj]Ei}

(where aj = the jth element in the A-computable enumeration of A in order).

Now we are ready to give an algorithm which takes as input some m ∈ N and tells us definitively

whether m ∈ CA. Below is such an algorithm:

1. Given m ∈ N, determine �j, i� such that �j, i� = m. (This is a computable process since

encoding and decoding pairing functions is a computable process.)

2. Now, A-computably determine the jth element of A in our fixed enumeration of A in <-order.

3. Then, compare aj under Ei to all smaller elements of A. That is, ask the following: ajEia0?

ajEia1? . . . ajEiaj−1? (This isA-computable since Ei isA-computable for each i ∈ {1, . . . , n}.)

• If yes to at least one of these, that is, if
�
ajEia0 ∨ ajEia1 ∨ · · · ∨ ajEiaj−1

�
, then

stop. We know that �j, i� = m /∈ CA.

• If no to all of these, that is, if
�
¬(ajEia0) ∧ ¬(ajEia1) ∧ · · · ∧ ¬(ajEiaj−1)

�
, then

stop. We know that �j, i� = m ∈ CA.

Now it is clear that CA is an A-computable set without repetition, in which each equivalence class

of A is enumerated exactly once, and it is represented by the least such element in the equivalence

class. That is,

[aj]Ei ∈ CA ⇐⇒ aj is the smallest elt of [aj]Ei (4.1)

A nice property of nested equivalence structures in general is an easy characterization of when

two equivalence classes are contained in each other. We have the following.

Lemma 4.2. Let A = (A,E1, . . . , En), let a, b ∈ A, and let i, � ∈ {1, . . . , n} such that i ≤ �. Then,

aEib ⇐⇒ [b]E� ⊆ [a]Ei

75

Proof. Since A is a nested equivalence structure with i ≤ �, we know that [b]E� ⊆ [b]Ei . Therefore,

aEib =⇒ [b]Ei = [a]Ei =⇒ [b]E� ⊆ [b]Ei = [a]Ei . Conversely, we know that b ∈ [b]E� . Therefore

[b]E� ⊆ [a]Ei =⇒ b ∈ [a]Ei =⇒ bEia.

4.2 Trees

Trees have been a useful tool in the study of many areas of mathematics, and computable structure

theory is no different. In examining computability-theoretic properties of nested equivalence struc-

tures, we build off of work done by Lempp, McCoy, Miller, and Solomon in [31] and by Miller in [36]

on the computable categoricity of trees of finite height and trees of infinite height.

We define a tree, T = (T,≺), to be a structure which consists of a universe, T , and a strict

partial order, ≺, on T which obeys the following two conditions. First, T must contain a least

element under ≺. And second, for every x ∈ T , ≺ well-orders the set of predecessors of x in T under

≺. For our purposes, we restrict ourselves to the case where T is a countable set. Note that there

are several definitions of trees, of which this is just one. We have chosen this particular definition for

several reasons, including that we can therefore follow the conventions used in [31] and [36], upon

which much of this research is based. Additionally, this particular definition works much better with

many of the properties of computability that we are interested in examining. For a slightly more

detailed explanation of why this tree definition is preferred when examining computable categoricity,

see [36].

We say that T is a computable tree if T is a computable set and ≺ is a computable relation.

Each element of the universe T is called a node of the tree T . We call the least element under ≺

the root node, or simply the root. We think of the root node as being at level 0 of the tree. Our

convention here is that trees grow “down”, with the root node being the top node of the tree. For

a finite height tree, we define the level of a node x ∈ T by counting the number of predecessors x

has in T . That is:

levelT (x) = card({y ∈ T : y ≺ x})

We define the height of a tree to be the largest level of the nodes in the tree. Note that this

definition puts both the height and level of the root node at 0, and allows for possibly infinite height

trees.

ht(T) = sup
x∈T

{levelT (x)}

Informally, we can think of a path through a tree, T , as being a list of nodes which begins at

76

the “top” of the tree, and goes all the way through to the “bottom” of the tree. Formally, a path

through a tree T = (T,≺) is a maximal linearly ordered subset of T . (Recall that a maximal linearly

ordered subset is one that is not contained in any other linearly ordered subset of T .)

We say that a tree of finite height n < ω is a full tree if every node of the tree terminates at

exactly level n. With these definitions, a full finite height tree of height n will have that all paths

through the tree are paths containing n + 1 elements, or more simply are paths of length n + 1.

(Note that other conventions exist for these definitions — ones where the height and length of such

a path are defined to be equal, putting the root node at level 0 and height 1. We have chosen these

specific conventions for ease of notation later on.)

We now show some nice computability-theoretic properties when dealing with full computable

trees of finite height. Although the following results are pretty standard in the study of trees, they

will be quite useful in later sections so we discuss them in detail here.

It is important to note that in the general setting, the level of a node of a tree is not a computable

function, though for a computable tree it is c.e. since we can approximate it in stages. If we restrict

our view to only full finite height trees, however, this changes.

Lemma 4.3. If T is a full computable tree of finite height, n, then determining the level of a given

node is a computable process. (That is, levelT (x) is a computable function.)

Proof. Let T = (T,≺) be a full computable tree of finite height, n, and let x be some node in T .

Since T is full of height n, all paths through T are exactly length n+1 = ht(T)+1, and this means

that all nodes in T are in a path of length n + 1. Hence, in any algorithmic process to determine

levelT (x), we know exactly when to stop waiting! Explicitly, given some node x of our tree T , we

describe such a computable process to determine levelT (x):

1. Start enumerating elements of T . (Possible computably since universe of T is a computable

set.)

2. As we enumerate elements of T , start pairwise determining whether pairs y, z ∈ T are: y ≺ z,

z ≺ y, or neither. (This is possible computably, since “≺” is computable and at each stage we

have enumerated only a finite list of elements into the universe of T , hence at each stage there

are only finitely many pairs of elements for which to determine “≺”.)

3. Continue this method until a stage s when we have enumerated x into T in step 1, and x is

part of a chain under ≺ with exactly n+ 1 elements in it from step 2. (We know such a finite

77

stage exists, since we know x must be in at least one path through T , and every path is exactly

length n+ 1.)

4. Count the number of predecessors of x in the chain. This will be the level of node x.

Note that in the above proof, we used the fact that T and ≺ were computable. We can in fact

loosen that criteria, to get the following corollary. We use the shorthand notation that for a tree,

T = (T,≺), having a “T -oracle” means that we have an oracle for T⊕ ≺.

Corollary 4.4. If T is a full tree of finite height n, then levelT (x) is T -computable.

Proof. We modify the algorithm given in Lemma 4.3 as follows. Everywhere we “enumerate elements

of T” or “determine whether pairs are ≺”, we instead “use a (T⊕ ≺)-oracle to enumerate elements

of T” and “use a (T⊕ ≺)-oracle to determine whether pairs are ≺”. The rest follows.

For computable, full finite height trees, we have a similar result for the set of predecessors of a

given node. Let x be some node in a tree T , and define Px = {predecessors of x} = {y ∈ T : y ≺ x}.

The next result says that Px is a computable set.

Lemma 4.5. If T = (T,≺) is a full computable tree of finite height, n, then determining the set of

all predecessors of a given node is a computable process, uniform in n.

Proof. Let T = (T,≺) be a full computable tree of finite height n, and let x be some node in T .

Note that by definition we know that levelT (x) ≤ n. We can compute Px as follows.

1. Compute levelT (x). (This is computable by Lemma 4.3.) Say levelT (x) = �.

2. Start enumerating elements of T . As we enumerate each new element, compare it to x under

≺. (This is possible computably since T and ≺ are both computable.)

3. Keep enumerating elements of T until we have found �-many elements which are ≺ x. (We

know this is a finite process since � = levelT (x) = card({y ∈ T : y ≺ x}).)

4. Let Px = the set of all �-many nodes which are ≺ x from step 3.

Again, we can loosen the criteria that T be computable and get the following corollary.

78

Corollary 4.6. If T is a full finite height tree of height n, then Px = {predecessors of x} = {y ∈

T : y ≺ x} is T -computable, uniformly in n.

Proof. We modify the algorithm given in Lemma 4.5 to use a T -oracle and ≺-oracle in enumerating

elements of T , determining whether elements are in T , or determining whether one element is ≺

another. The rest follows.

Note that for all of the above concepts, we relied heavily on the fact that we knew how long

each path in the tree was. Lempp, McCoy, Miller, and Solomon in [31] referred to this as a node

being established at some particular stage. Specifically, if T is a computable tree of height n and

{Ts}s>0 is some approximation of the tree, then a node x is established at stage s if it lies on a

path of length n+ 1 and that path is entirely contained within the approximation Ts. Though any

node in a finite height computable tree may be established, the key concept behind full finite height

computable trees is that all nodes of the tree are indeed established at some finite stage. We will

take full advantage of this fact in later sections.

We now examine the different computable (or T -computable) ways in which we can enumerate

the nodes of T . Let Ti = {nodes at level i}.

Lemma 4.7. If T = (T,≺) is a tree, then the set of nodes T is T -computable, and furthermore we

can T -computably list the nodes in order T = {t0, t1, t2, · · · } where t0 < t1 < t2 < · · · .

Proof. The proof is straightforward, since being T -computable means we have an oracle for T .

Beginning with 0, we simply ask for each n ∈ N whether n ∈ T . The 0th n for which this is true is

t0, the m-th n for which this is true is tm, and so on. This is clearly a T -computable process.

Lemma 4.8. If T = (T,≺) is a full tree of height n, then Ti = {nodes at level i} is T -computable

for each i ∈ {0, . . . , n}. Furthermore, we can list each of the elements in each Ti in order from

smallest to largest under the usual ordering “<”.

Proof. We describe a T -computable process to enumerate each Ti in order. First as per Lemma 4.7

we T -computably enumerate the nodes of T in order: T = {t0, t1, t2, . . .} with t0 < t1 < t2 < · · · .

For each tj , as we enumerate it we then determine levelT (tj); this is T -computable by Lemma 4.3.

Then, we put each tj into Ti accordingly where i = levelT (tj). In this way, we let mi,k be the kth

node at level i that is enumerated into T . Then Ti = {mi,0,mi,1,mi,2, . . .} for each i ∈ {0, 1, . . . , n}.

Since each tj is enumerated in order, so too is each mi,k, and we have mi,0 < mi,1 < mi,2 < · · · for

each i ∈ {0, 1, . . . , n}, as desired.

79

We have proved this for all levels of a full finite tree, T . In particular, we will later need the

above result for terminating nodes, or end nodes, of T . If T is a full tree of height n, we will denote

the set of all terminating nodes or end nodes of T enumerated in this way as Tn = {e0, e1, e2, . . .}.

If we are perhaps dealing with two trees, say T and S, then to clarify we will call their end nodes

{eT ,0, eT ,1, eT ,2, . . .} and {eS,0, eS,1, eS,2, . . .} respectively.

4.3 Basic Notions: Drawing a Tree from a Nested Equiva-

lence Structure

We are now ready to begin examining nested equivalence structures further. We begin first with

an intuitive discussion of how to represent a finitely nested equivalence structure as a finite-height

tree. Doing so will not only visually help us view the nested equivalence structure and its associated

(possibly quite intricate!) nesting properties, but it will also serve as a foundation for formally

building a way to go back and forth between trees and nested equivalence structures, which we will

do in Section 4.5 and Section 4.4.

Our goal, then, for the moment is: given a nested equivalence structure, A = (A,E1, . . . , En),

we wish to represent it on a tree. We will do this by letting each node on the tree represent a

unique equivalence class under one of the equivalence relations. The nodes at level i will represent

the equivalence classes under Ei, and the branching of the tree will represent the subset inclusion,

“⊆” of each equivalence class.

Method for drawing a nested equivalence structure tree:

1. Draw one root node at level 0.

2. Emanating from the root node, draw one branch for every equivalence class of E1, and label

each node with the names of the E1 equivalence classes.

3. The first node at level 1 should now be labelled as [a]E1 for some a ∈ A. Emanating from this

node, draw one branch for every equivalence class of E2 which is a subset of [a]E1 , and label

each with the names of these E2-equivalence classes.

4. Do the same for the 2nd and subsequent nodes at level 1, drawing one branch for every

equivalence class of E2 which is a subset of the node it emanates from, and labeling them with

the appropriate E2 equivalence classes.

80

5. Continue in this manner for each level of the tree until you have drawn branches and nodes to

represent each of the equivalence classes for E3, . . . , En at levels 3 through n of the tree.

6. Finally, for level n+1 of the tree, draw one branch emanating from each En-equivalence class

for every element of A which is in the given En-equivalence class.

The result will be a tree which represents the nested equivalence structure by fully describing

the nesting of the equivalence relations and the elements of each equivalence class. To more fully

understand what is going on, this method is much better explained by an example.

Example 4.9. Draw the tree associated with the nested equivalence structure A = (N, E1, E2, E3),

with E1, E2, and E3 defined as follows ∀n,m ∈ N:

E1 E2 E3

2nE12m 4nE24m 8nE3(8n+ 4)

(2n+ 1)E1(2m+ 1) (4n+ 1)E2(4m+ 1) (8n+ 1)E3(8n+ 5)

(4n+ 2)E2(4m+ 2) (8n+ 2)E3(8n+ 6)

(4n+ 3)E2(4m+ 3) (8n+ 3)E3(8n+ 7)

Solution. Notice that under each of E1, E2, E3 we have the following equivalence classes:

E1 : [0]E1 ={0, 2, 4, 6, 8, 10, 12, . . .}, [1]E1={1, 3, 5, 7, 9, 11, 13, . . .}

E2 : [0]E2={0, 4, 8, 12, . . .}, [1]E2={1, 5, 9, 13, . . .}, [2]E2={2, 6, 10, . . .}, [3]E2={3, 7, 11, . . .}

E3 : [0]E3={0, 4}, [1]E3={1, 5}, [2]E3={2, 6}, [3]E3={3, 7},

[8]E3={8, 12}, [9]E3={9, 13}, [10]E3={10, 14}, [11]E3={11, 15}, . . .

81

This yields the following nesting:

E2 ⊆ E1 : [0]E2 , [2]E2 ⊆ [0]E1

[1]E2 , [3]E2 ⊆ [1]E1

E3 ⊆ E2 : [0]E3 , [8]E3 , [16]E3 , . . . ⊆ [0]E2

[1]E3 , [9]E3 , [17]E3 , . . . ⊆ [1]E2

[2]E3 , [10]E3 , [18]E3 , . . . ⊆ [2]E2

[3]E3 , [11]E3 , [19]E3 , . . . ⊆ [3]E2

Our tree then looks as follows:

0[]E1 1[]E1

0[]E2 2[]E2 1[]E2 3[]E2

0[]E3 8[]E3 16[]E3 2[]E3 10[]E3 18[]E3 1[]E3 9[]E3 17[]E3 3[]E3 11[]E3 19[]E3

0 4 8 12 16 20 2 6 10 14 18 22 1 5 9 13 17 21 3 7 11 15 19 23

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 4.1: Tree representing Example 4.9, a 3-nested equivalence structure with its initial labelling
of nodes.

Returning now to the general case there remains only one final step in labelling the tree we have

now built for a nested equivalence structure of the form A = (A,E1, . . . , En). For consistency on

each level, it is often nice to think of the root node and the terminating nodes as also representing

equivalence classes. Let E0 represent the equivalence relation in which everything is equivalent —

that is, ∀a, b ∈ A
�
aE0b

�
. Let En+1 represent the equivalence relation of equality — that is, no

elements of A are considered equivalent under En+1, unless they are identical. Note that these new

82

equivalence relations nest nicely inside of any nested equivalence structure as we would expect:

En+1 ⊆ En ⊆ En−1 ⊆ · · · ⊆ E2 ⊆ E1 ⊆ E0

Our final steps in creating the tree are to:

7. Label the root node as the single equivalence class for E0.

8. Take each terminating node which is currently labeled “a” for some a ∈ A, and relabel it as

[a]En+1 . The terminating nodes now correspond to En+1 equivalence classes.

Performing these final steps on Example 4.9, yields the following labelling of our tree:

0[]E0

0[]E1 1[]E1

0[]E2 2[]E2 1[]E2 3[]E2

0[]E3 8[]E3 16[]E3 2[]E3 10[]E3 18[]E3 1[]E3 9[]E3 17[]E3 3[]E3 11[]E3 19[]E3

0[]E4 4[]E4 8[]E4 12[]E4 16[]E4 20[]E4 2[]E4 6[]E4 10[]E4 14[]E4 18[]E4 22[]E4 1[]E4 5[]E4 9[]E4 13[]E4 17[]E4 21[]E4 3[]E4 7[]E4 11[]E4 15[]E4 19[]E4 23[]E4

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 4.2: Tree representing Example 4.9, a 3-nested equivalence structure with all of its nodes
labelled.

This completes the construction. Of course, these steps yield only an intuitive definition of a

tree. To formally define a tree, we need to define the universe, and the partial order, and show that

it obeys our desired properties. We will do this fully in the following section.

One thing to notice about this construction is that it appears to be a computable construction;

the algorithm we have described seems like it could be applied to any computable nested equivalence

structure. We will formally prove that this is indeed the case in the next section. The next thing

to notice is the tree that we have built is a full tree. That is, all nodes terminate at the same level

of the tree. The next thing to notice is that we started out with an n-nested equivalence structure

83

with n = 3, and the tree we built was of height n + 1 = 4. So a 1-nested equivalence structure

would yield a full tree of height 2. It is then easy to intuitively see that we could take any full tree

of height ≥ 2 and conversely interpret it as a nested equivalence structure.

4.4 Trees to Nested Equivalence Structures

In this section we formalize the notion of going from a tree to a nested equivalence structure.

Although the methods we will describe would work equally as well for trees and nested equivalence

structures with finite domains, we wish to focus our examination on trees and nested equivalence

structures with countably infinite domains.

Given some full tree T of finite height ≥ 2 we wish to build a nested equivalence structure out

of it. We will do this in several steps. First, we will create a computably isomorphic tree by simply

relabeling the nodes in a computable manner. We will create the new labels of the tree in such a

way that they are the pre-cursor to the equivalence classes, and we will call this isomorphism h.

Then we will take the newly relabelled nodes, and use the order relation inherited from T to define

a nested equivalence structure. We will call this second function h̃. Below is a picture explaining

just what we will do.

· · ·

T

· · ·

TA

hA : T → TA

ATA�
A,E

ATA
1 , . . . , E

ATA
n

�

h̃ : TA → CATA

Figure 4.3: Diagram representing the process to take a full finite height tree, T , with countably
infinite universe and a countably infinite set, A, and build a nested equivalence structure from it.

In all of the steps to go between trees and nested equivalence structures we will prove that h

and h̃ are 1-1, onto, computable, and preserve or create the desired structure. We first begin with h

in the following theorem. Note that since our eventual goal is a nested equivalence structure of the

form A = (A,E
ATA
1 , . . . , E

ATA
n), it will be convenient to have the height of the given tree represented

as n+ 1. Additionally, we use the shorthand notation (T ⊕A) to represent the set (T⊕ ≺T ⊕A).

Theorem 4.10. Given a tree T = (T,≺T) which is full and has finite height n + 1 ≥ 2, and

given any infinite set A ⊆ N, we can define a function hT
A which will (T ⊕ A)-computably build an

isomorphic tree, TA = (TA,≺TA), in which each node is of the form [a]
E

ATA
i

for some a ∈ A and

84

some i ∈ {0, . . . , n+ 1}, and in which the tree TA is itself (T ⊕A)-computable.

Proof. The proof is contained in the following lemmas: Lemma 4.11, Lemma 4.12, and Lemma 4.13.

We note that our function hT
A , which we have yet to define, depends upon the given set A and

upon the tree T . Given any set A ⊆ N and any tree T with infinite domain in N, we will prove that

we can define a function hT
A via the below methods. When the tree T is clear from the context (as

it is in the remainder of this chapter), we will drop the superscript T , and write simply hA. In later

chapters (especially Chapter 5), the tree upon which hT
A depends is often not clear from context,

and so we will again use the subscript “T ” (or “S”, or “U”, etc) as necessary.

Now to define hA, we let T be some infinite set, and we let T = (T,≺T) be a full tree of finite

height n + 1 ≥ 2. Additionally, let A = {a0, a1, . . .} ⊆ N with a0 < a1 < · · · , and let {e0, e1, . . .}

be an enumeration of all the end nodes of T as in Lemma 4.8. For x ∈ T , we let j represent the

smallest i for which x �T ei. We can now define the function hA as follows.

hA(x)
defn
= [aj]

E
ATA
levelT (x)

(4.2)

Note that at this point, we have a purely syntactical definition of hA. We do not yet know what

“EATA ” means. It is simply notation at this point, to which we will later assign meaning. To

calculate hA(x), we simply substitute aj and levelT (x) into the above equation.

Lemma 4.11. The function hA, defined in Equation 4.2, is (T ⊕A)-computable.

Proof. We first A-computably fix some enumeration A = {a0, a1, a2, . . .} such that a0 < a1 < a2 <

· · · . We next fix some T -computable enumeration of terminating nodes, or end nodes, of T as in

Lemma 4.8: Tn+1 = {e0, e1, e2, . . .} with e0 < e1 < e2 < · · · . For the end nodes of T we define hA

to be:

hA(ej) = [aj]
E

ATA
n+1

We now need to define hA for inputs on other levels of T .

1. Start with e0. Now T -computably find all predecessors of e0 and their levels (as in Lemma 4.5

and Lemma 4.3). Order them by their levels as: Pe0 = {pe0,0, pe0,1, pe0,2, . . . , pe0,n}, where the

second index denotes the level of the given predecessor of e0. Define hA to be:

hA(pe0,i) = [a0]
E

ATA
i

85

2. Next, continue on to e1. Now T -computably find its predecessors and levels (as in Lemma 4.5

and Lemma 4.3), ordered as Pe1 = {pe1,0, pe1,1, pe1,2, . . . , pe1,n}. Next check for i ∈ {0, . . . , n}

whether pe1,i = pe0,i. (Note: at a minimum, pe1,0 = pe0,0 since there is only one root node on

T .) Then, for each i ∈ {0, . . . , n}:

• If pe1,i = pe0,i, then do nothing. We have already defined hA on this node.

• If pe1,i �= pe0,i, then define hA to be:

hA(pe1,i) = [a1]
E

ATA
i

3. Continue on in this manner, T -computably enumerating predecessors of each ek in order

as Pek = {pek,0, pek,1, pek,2, . . . , pek,n}, and then checking for which previously enumerated

predecessors pek,i = pej ,i.

• If for some j < k we have that pek,i = pej ,i then do nothing. We have already defined hA

on this node.

• If ∀j < k we have pek,i �= pej ,i then define hA to be:

hA(pek,i) = [ak]
E

ATA
i

The above is a (T ⊕A)-computable process, and hence hA is a (T ⊕A)-computable function. Given

some node x ∈ T , to figure out hA(x) we simply apply the above process in “reverse”. That is, we

T -computably ask in this order: x �T e0? x �T e1? x �T e2? . . . We know that there exists at

least one i for which x �T ei since x is a node on our full tree and {e0, e1, . . .} lists all end nodes of

the tree. Then for j = the smallest i for which x �T ei, we have that hA = [aj]
E

ATA
levelT (x)

.

Now, although we know that our end-goal is to use these relabelled nodes of the tree to eventu-

ally represent equivalence classes of a nested equivalence structure, at this point we have purely a

syntactic definition of [aj]
E

ATA
i

based on our algorithm for hA. So although [aj]
E

ATA
i

looks like an

equivalence class, we have yet to define the equivalence relation or any other members of the class.

At this point in our process, then, [aj]
E

ATA
i

is purely some syntactical combination of symbols as

applied by the above algorithm. There is no deeper meaning (yet!) implied, and therefore for the

moment:
�
[aj]

E
ATA
i

= [ak]
E

ATA
�

�
⇐⇒

�
aj = ak ∧ i = �

�
(4.3)

86

Given this syntactical definition, we let TA = range(hA) ⊆ {[a]
E

ATA
i

: a ∈ A ∧ 0 ≤ i ≤ n+ 1}.

Lemma 4.12. The function hA : T → TA as defined in Lemma 4.11 is both 1-1 and onto, and

furthermore {[a]
E

ATA
n+1

: a ∈ A} ⊆ TA.

Proof. Since we defined TA = range(hA), it is clear that hA : T → TA is onto. To show then that all

of A is covered in TA, we fix some A-computable enumeration of A = {a0 < a1 < a2 < · · · } and some

T -computable enumeration of end nodes Tn+1 = {e0 < e1 < e2 < · · · } as in Lemma 4.11. Then,

given any a ∈ A, a = aj for some aj in this enumeration of A. And by definition, [aj]
E

ATA
n+1

= hA(ej).

Hence for any a ∈ A, {[a]
E

ATA
n+1

∈ range(hA).

To show that hA is 1-1 we let x, y be nodes in T such that h(x) = h(y). Then h(x) = [aj]
E

ATA
levelT (x)

and h(y) = [ak]
E

ATA
levelT (y)

for some aj , ak ∈ A = {a0 < a1 < a2 < · · · } where ej is the least terminating

node that is �T x and ek is the least terminating node that is �T y. Since h(x) = h(y), this implies

that ej = ek and levelT (x) = levelT (y) as in Equation 4.3. Therefore x and y are both predecessors

of ej = ek. Since T is a tree, {x, y} is a well-ordered set, and hence must have a least element. But

levelT (x) = levelT (y), which implies that x �≺T y and y �≺T x. Therefore the only way that this is

possible is if x = y.

Since hA simply relabels the nodes of T in a unique, 1-1 way, we can define a tree, TA = (TA,≺TA)

where ≺TA is inherited directly from ≺T . That is,

hA(x) ≺TA hA(y)
defn
⇐⇒ x ≺T y (4.4)

Or equivalently,

[aj]
E

ATA
i

≺TA [ak]
E

ATA
�

defn
⇐⇒ h

-1
A

�
[aj]

E
ATA
i

�
≺T h

-1
A

�
[ak]

E
ATA
�

�
(4.5)

We now prove what is intuitively fairly obvious – that TA is indeed a tree and furthermore it is

isomorphic to T . We also prove that the construction is (T ⊕ A)-computable. For the following

lemma, assume we are given T as in Theorem 4.10. Then let TA = (TA,≺TA) with TA = range(hA)

for hA defined as in Equation 4.2, and with ≺TA defined as in Equation 4.4 and Equation 4.5.

Lemma 4.13. TA is a (T ⊕ A)-computable tree, and furthermore TA is (T ⊕ A)-computably iso-

morphic to T .

Proof. We must first show that TA as defined is indeed a tree. Since TA = range(hA), and we showed

hA was 1-1, then TA is a countably infinite set since T is. Also, ≺TA as defined is a strict partial

87

order on TA:

• Irreflexive: Let x ∈ TA. This implies that h-1
A (x) ∈ T .

T is a tree =⇒ h
-1
A (x) �≺T h

-1
A (x)

⇐⇒ x �≺TA x, as in Equation 4.4 and Equation 4.5

• Transitive: Let x, y, z ∈ TA. Then h-1
A (x), h-1

A (y), h-1
A (z) ∈ T , and we have:

x ≺TA y ∧ y ≺TA z ⇐⇒ h
-1
A (x) ≺T h

-1
A (y) ∧ h

-1
A (x) ≺T h

-1
A (y)

=⇒ h
-1
A (x) ≺T h

-1
A (z) (since T a tree, hence ≺T is transitive)

⇐⇒ x ≺TA z (by definition)

• Assymmetric: Let x, y ∈ TA. Then h-1
A (x), h-1

A (y) ∈ T , and we have:

x ≺TA y ⇐⇒ h
-1
A (x) ≺T h

-1
A (y) =⇒ h

-1
A (y) �≺T h

-1
A (x) ⇐⇒ y �≺TA x

To show that predecessors are well-ordered, we let {y1, . . . , ym} be predecessors under ≺TA of

some x ∈ TA. By the way we’ve defined ≺TA this means that {h-1
A (y1), . . . , h-1

A (ym)} are predecessors

of h-1
A (x) on our tree T = (T,≺T), and hence has a least element, call it h-1

A (ym0). Therefore, for

each � ∈ {1, . . . ,m}− {m0},

h
-1
A (ym0) ≺T h

-1
A (y�) ⇐⇒ ym0 ≺TA y�

Hence, ym0 is the least element of {y1, . . . , ym} under ≺TA , and the set of predecessors of x must

therefore be well-ordered.

We now must show that TA is a (T ⊕ A)-computable tree. First we show that TA is a (T ⊕A)-

computable set. Again, we note that TA is simply a set of nodes with some certain syntax as defined

by hA. So, given some [a]Ei(TA), can we (T ⊕ A)-computably tell if [a]Ei(TA) ∈ TA = range(hA) ?

Below is such a process.

1. First ask a ∈ A? This is clearly an A-computable question. If no, then stop; we know

[a]
E

ATA
i

/∈ TA. If yes, then continue to next step.

2. Then ask if i ≤ n+ 1. If no, then stop; we know [a]
E

ATA
i

/∈ TA. If yes, then continue to next

88

step.

3. Ask if i = n+1. If yes, then stop; we know [a]
E

ATA
i

∈ TA. If no, then this means that i < n+1,

continue to next step.

4. Now use the A-oracle to enumerate A as A = {a0, a1, a2, . . .} where a0 < a1 < a2 < · · · . Then

find k such that a = ak. (This is an A-computable process.)

5. Now using a T -oracle, find the 0th through kth end nodes, e0 through ek, in the T -computable

enumeration of end nodes Tn+1 = {e0, e1, . . .} with e0 < e1 < · · · from Lemma 4.8. (This is a

T -computable process.) Also find the level i predecessor of ek in T , which is also T -computable

by Lemma 4.5 and Lemma 4.3. Call it pek,i.

6. Now, for each of e0, . . . , ek−1, check if pek,i is also a predecessor of any of e0, . . . , ek−1. Con-

ducting this check is T -computable, since ≺T is T -computable. If no, pek,i is not a predecessor

for any of e0, . . . , ek−1 (that is, pek,i �≺T e0 ∧ pek,i �≺T e1 ∧ · · · ∧ pek,i �≺T ek−1), then

stop; we know that [a]
E

ATA
i

∈ TA. If yes, pek,i is a predecessor for at least one of e0, . . . , ek−1

(that is, pek,i ≺T e0 ∨ pek,i ≺T e1 ∨ · · · ∨ pek,i ≺T ek−1), then stop; we know that

[a]
E

ATA
i

/∈ TA.

The above process relied only upon a T -oracle and an A-oracle, therefore TA is a (T ⊕A)-computable

set.

Now, we need to check that ≺TA is a (T ⊕ A)-computable relation. Given two nodes in TA,

that is, given some [a]
E

ATA
i

, [b]
E

ATA
�

∈ TA, we describe a (T ⊕A)-computable process to determine

whether [a]
E

ATA
i

≺TA [b]
E

ATA
�

. Recalling our definition of ≺TA in Equation 4.5 we proceed as follows.

1. First, A-computably fix some enumeration of A = {a0, a1, . . .} such that a0 < a1 < · · · as in

Lemma 4.11, and determine which elements a and b correspond to. (That is, find j, k such

that a = aj and b = ak.) This is A-computable.

2. Then using a T -oracle, fix some enumeration of end nodes of T , Tn+1 = {e0, e1, . . .} with

e0 < e1 < · · · as in Lemma 4.8, and find the jth and kth end node in this enumeration, ej and

ek.

3. Next find the ith level predecessor of ej , call it pej ,i, and find the �th level predecessor of

ek, call it pek,�. This is a T -computable process since Pej = {predecessors of ej} and Pek =

{predecessors of ek} are T -computable by Corollary 4.6, and levelT is T -computable by Corol-

lary 4.4.

89

4. Now, using our T -oracle, check whether pej ,i ≺TA pek,�. If yes, then stop; we know that

[a]
E

ATA
i

≺TA [b]
E

ATA
�

. If no, then stop; we know that [a]
E

ATA
i

�≺TA [b]
E

ATA
�

.

The above process relied only upon a T -oracle and anA-oracle, therefore≺TA is a (T ⊕A)-computable

relation, and hence TA is a (T ⊕A)-computable tree.

Since we already showed that hA is 1-1 and onto, to show hA is a (T ⊕ A)-computable isomor-

phism, we need only show that hA preserves order and hA is computable. We already proved that

hA is (T ⊕ A)-computable in Lemma 4.11. We took preserving order under hA as definition in

Equation 4.4. Therefore TA is (T ⊕A)-computably isomorphic to T .

This concludes the proof of Theorem 4.10. Focusing our examination on computable trees, T ,

and a computable sets, A, the following corollaries are immediate.

Corollary 4.14. Given a computable tree T = (T,≺T) which is full and has finite height n+1 ≥ 2,

and given any infinite, computable set A ⊆ N, we can define a computable tree TA = (TA,≺TA) in

which each node is of the form [a]
E

ATA
i

for some a ∈ A and some i ∈ {0, . . . , n+1}, and furthermore

TA is computably isomorphic to T .

Corollary 4.15. Given a computable tree T = (T,≺T) which is full and has finite height n+1 ≥ 2,

we can define a computable tree TN = (TN,≺TN) in which each node is of the form [a]
E

ATN
i

for some

a ∈ N and some i ∈ {0, . . . , n+ 1}, and furthermore TN is computably isomorphic to T .

Before moving on, we note a few nice properties of the nodes of TA as built. These properties

will be quite useful as we complete our construction of a nested equivalence structure.

Corollary 4.16. Given T as in Theorem 4.10, let TA = (TA,≺TA) with TA = range(hA) for hA

defined as in Lemma 4.11, and with ≺TA defined as in Equation 4.4 and Equation 4.5. Then the

following properties hold:

1. levelTA([aj]E
ATA
i

) = i

2. ∀j ∈ N
�
[aj]

E
ATA
n+1

∈ TA

�

3. [aj]
E

ATA
i

∈ TA =⇒ [aj]
E

ATA
i

�TA [aj]
E

ATA
n+1

4. [aj]
E

ATA
i

≺TA [ak]
E

ATA
�

=⇒ aj ≤ ak

5. [a0]
E

ATA
0

is the root node

Proof. This is all straightforward by construction.

90

1. By construction h-1
A ([aj]

E
ATA
i

) = pej ,i = the level i predecessor of ej . Since hA is an isomor-

phism, it therefore preserves levels of the tree. Hence, levelTA([aj]E
ATA
i

) = i

2. This is just another way of rewording the final part of Lemma 4.12.

3. Since TA = range(hA), we know that h-1
A ([aj]

E
ATA
i

) = pej ,i, which is defined to be the level i

predecessor of ej . By construction we also know that hA(ej) = [aj]
E

ATA
n+1

. Therefore,

pej ,i �T ej ⇐⇒ h
-1
A ([aj]

E
ATA
i

) �TA h
-1
A ([aj]

E
ATA
n+1

)

⇐⇒ [aj]
E

ATA
i

�TA [aj]
E

ATA
n+1

(by Equation 4.5)

4. We assume that [aj]
E

ATA
i

≺TA [ak]
E

ATA
�

. This gives,

[aj]
E

ATA
i

≺TA [ak]
E

ATA
�

=⇒ [aj]
E

ATA
i

≺TA [ak]
E

ATA
�

�TA [ak]
E

ATA
n+1

(by 3)

=⇒ pej ,i is the ith level predecessor of ek

and hA(pek,i) = [aj]
E

ATA
i

By construction this happens exactly when ej ≤ ek. Therefore, j ≤ k, since the end nodes were

enumerated in order starting with the smallest: e0 < e1 < · · · . Since A was also enumerated

in order with a0 < a1 < · · · , this means that aj ≤ ak, as desired.

5. We begin by referencing the first step in the construction of hA in Lemma 4.11. This gives us

that [a0]
E

ATA
0

∈ TA. By statement 1, levelTA([a0]E
ATA
0

) = 0. Since a tree can only have one

node at level 0, [a0]
E

ATA
0

must be the root node of TA.

Now that we have taken a full, finite height tree and computably relabelled its nodes so that

they have the same syntax as equivalence classes, we now have the framework and foundation on

which to take these syntactically defined nodes and turn them into a nested equivalence structure.

We will use the structure of the tree and the properties of its partial order to define the equivalence

classes, the associated equivalence relations, and their nesting properties.

Theorem 4.17. Given TA as built in Theorem 4.10 (a full tree of finite height n + 1 ≥ 2 with

nodes TA of the form [aj]
E

ATA
i

for some A = {a0 < a1 < · · · } ⊆ N and i ∈ {0, . . . , n + 1}

and satisfying the properties of Corollary 4.16), we can define a 1-1 and onto (T ⊕ A)-computable

91

function h̃ which takes nodes of TA and turns them into equivalence classes of A. These equivalence

classes are nested and therefore define the equivalence relations of a nested equivalence structure

ATA = (A,E
ATA
1 , . . . , E

ATA
n). Furthermore, this nested equivalence structure is itself (T ⊕ A)-

computable.

Proof. The proof is contained in the following lemmas: Lemma 4.18, Lemma 4.19, Lemma 4.20, and

Lemma 4.21.

We describe now the function h̃ in detail. This function takes the purely syntactically defined

nodes of TA which look like equivalence classes, and translates them into actual equivalence classes

on A. This is the first step in taking our tree TA of height n + 1 and translating it into a nested

equivalence structure of the form A = (A,E
ATA
1 , . . . , E

ATA
n).

Lemma 4.18. Given TA as built in Theorem 4.10, we can define a 1-1 and onto function h̃ which

takes nodes of TA and turns them into equivalence classes of A.

Proof. We first note that as built the elements of TA already look like they represent equivalence

classes of the equivalence relations E
ATA
0 , E

ATA
1 , . . . , E

ATA
n , E

ATA
n+1 . We therefore define our function

h̃ so as to take the purely syntactical representation of nodes [aj]
ATA
Ei

∈ TA and turn them into

identical symbols, but now with the usual equivalence class meaning given appropriate definitions

of relations E
ATA
0 , E

ATA
1 , . . . , E

ATA
n , E

ATA
n+1 . We then let h̃ = the “identity” function on different

universes. That is, h̃([aj]
E

ATA
i

) = [aj]
E

ATA
i

, where h̃ : TA → CATA
. For now, we take CATA

to

simply be the set of equivalence classes as defined by the equivalence-class-like elements of TA. In

Lemma 4.20, we will show that this set CATA
actually corresponds to the set of equivalence classes

as in Lemma 4.1. Clearly as defined, then, h̃ is 1-1 and onto.

To go from the syntactical set of nodes TA to a set of equivalence classes, we need only define

the elements of these different classes. We do this by defining the following equivalence relations for

i ∈ {0, . . . , n+ 1}:

aE
ATA
i b

defn
⇐⇒ ∃ node x at level i of TA s.t. [a]

E
ATA
n+1

�TA x and [b]
E

ATA
n+1

�TA x (4.6)

Now, we need to show that each E
ATA
i is indeed an equivalence relation on A for i ∈ {0, . . . , n+1}.

We let a, b, c ∈ A and i ∈ {0, . . . , n}. We have:

• Reflexive: Note that [a]
E

ATA
i

�TA [a]
E

ATA
n+1

for i ≤ n+1. Therefore there exists some x at level

i, namely x = [a]
E

ATA
i

, such that x = [a]
E

ATA
i

�TA [a]
E

ATA
n+1

and x = [a]
E

ATA
i

�TA [a]
E

ATA
n+1

.

Therefore aE
ATA
i a for i ∈ {0, . . . , n+ 1}.

92

• Symmetric: aE
ATA
i b ⇐⇒ ∃ node x at level i s.t. [a]

E
ATA
n+1

�TA x and [b]
E

ATA
n+1

�TA x

⇐⇒ ∃ node x at level i s.t. [b]
E

ATA
n+1

� x and [a]
E

ATA
n+1

� x ⇐⇒ bE
ATA
i a

• Transitive:

aE
ATA
i b ∧ bE

ATA
i c =⇒

�
∃x at level i s.t. [a]

E
ATA
n+1

�TA x and [b]
E

ATA
n+1

�TA x
�
, and

�
∃x at level i s.t. [b]

E
ATA
n+1

�TA x and [c]
E

ATA
n+1

�TA x
�

=⇒
�
∃x, y at level i s.t. [a]

E
ATA
n+1

�TA x and [b]
E

ATA
n+1

�TA x and

[b]
E

ATA
n+1

�TA y and [c]
E

ATA
n+1

�TA y
�

=⇒ x = y (∗)

hence
�
∃x at level i s.t. [a]

E
ATA
n+1

�TA x and [c]En+1(TA) �TA x
�

=⇒ aE
ATA
i c

To finish out (*), we first let i = n+ 1. Since [b]
E

ATA
n+1

is at level n+ 1 of TA and so are x and

y, we must have that [b]
E

ATA
n+1

= x and [b]
E

ATA
n+1

= y. Therefore x = y as desired. Now we let

i < n + 1 and assume to the contrary, that x �= y. This would give that both x and y are

predecessors of [b]
E

ATA
n+1

. Therefore {x, y} must contain a least element, since in a tree the set

of a predecessors of a given node is well-ordered. But x and y are both at level i of the tree

TA, hence x ⊀TA y and y ⊀TA x, a contradiction.

Therefore for i ∈ {0, . . . , n+1}, given the definition in Equation 4.6, each E
ATA
i is an equivalence

relation on A, as desired.

Now finally, we need to show that the equivalence classes that come from the syntactical nodes of

TA are in fact well-defined under the equivalence relations E
ATA
0 , . . . , E

ATA
n+1 . That is, we need to show

that two different E
ATA
i -equivalence class looking nodes from TA don’t overlap when we turn them

into actual equivalence classes under the definition in Equation 4.6. We let [aj]
E

ATA
i

and [ak]
E

ATA
i

be two different elements of TA. We assume to the contrary that these two different equivalence

classes do overlap, or rather that ajE
ATA
i ak. By part 3 of Corollary 4.16, [aj]

E
ATA
i

is the ith level

predecessor of [aj]
E

ATA
n+1

and [ak]
E

ATA
i

is the ith level predecessor of [ak]
E

ATA
n+1

. By Equation 4.6,

ajE
ATA
i ak means that there exists some node x at level i of TA such that x �TA [aj]

E
ATA
n+1

and

x �TA [ak]
E

ATA
n+1

. Since TA is a tree, a given node can have at most one predecessor at each level.

Therefore x = [aj]
E

ATA
i

and x = [ak]
E

ATA
i

. Therefore [aj]
E

ATA
i

= [ak]
E

ATA
i

∈ TA, a contradiction

93

since we assumed these were different nodes in TA.

We next show that these equivalence relations nest exactly as we would hope in order to build a

nested equivalence structure. Recalling back to Section 4.3 and Example 4.9, we took an n-nested

equivalence structure and created two additional equivalence relations which also nicely nested into

that structure: equality and the trivial equivalence relation in which everything is equal. Our

construction thus far has resulted in the same.

Lemma 4.19. Let E
ATA
0 , E

ATA
1 , . . . , E

ATA
n , E

ATA
n+1 be equivalence relations as defined in Equation 4.6

of Lemma 4.18. Let ATA = (A,E
ATA
1 , . . . , E

ATA
n). Then ATA is a nested equivalence structure and

E
ATA
0 and E

ATA
n+1 are also nested as expected. Furthermore, E

ATA
n+1 corresponds to the relation of

equality, and E
ATA
0 corresponds to the equivalence relation under which everything in A is equal.

Proof. Since Lemma 4.18 showed that E
ATA
0 , E

ATA
1 , . . . , E

ATA
n , E

ATA
n+1 are indeed equivalence rela-

tions on A, we now need only show that the E
ATA
i ’s are nested as desired so that: E

ATA
i+1 ⊆ E

ATA
i

for i ∈ {0, . . . , n}. Recall that E
ATA
i+1 ⊆ E

ATA
i ⇐⇒ for any a ∈ A, [a]

E
ATA
i+1

⊆ [a]
E

ATA
i

, where this

is referring to actual equivalence classes under E
ATA
i and E

ATA
i+1 , not just a syntactical node in TA.

To do this, we need to show ∀ aj , ak ∈ A
�
akE

ATA
i+1 aj =⇒ akE

ATA
i aj

�
. So let aj , ak ∈ A.

akE
ATA
i+1 aj ⇐⇒ ∃ node x at level i s.t. x �TA [ak]

E
ATA
n+1

and x �TA [aj]
E

ATA
n+1

Since [aj]
E

ATA
n+1

and [ak]
E

ATA
n+1

are both nodes on TA, they must each have predecessors at levels 0−n

of TA. In particular, they have predecessors at level i of TA. In other words, there exist y and z at

level i such that:

y �TA [ak]
E

ATA
n+1

and z �TA [aj]
E

ATA
n+1

Therefore {x, y} are predecessors of [ak]
E

ATA
n+1

and {x, z} are predecessors of [aj]
E

ATA
n+1

(where we mean

not necessarily a strict predecessor, but a predecessor under “�TA”). Both of these sets must be

well-ordered sets since TA is a tree. Since levelTA(x) = i+1 and levelTA(y) = levelTA(z) = i < i+1,

we must have that:

y ≺TA x and z ≺TA x

Therefore {y, z} are predecessors of x and must also be a well-ordered set. But y and z are both

at level i of TA, which implies y ⊀TA z and z ⊀TA y. Therefore the only way this can happen is if

94

y = z. Therefore:

y ≺TA [ak]
E

ATA
n+1

and y ≺TA [ak]
E

ATA
n+1

with levelTA(y) = i

Therefore akE
ATA
i aj , as desired. Since aj , ak were chosen arbitrarily, this yields that E

ATA
i+1 ⊆ E

ATA
i

for i ∈ {0, . . . , n}.

Now examining E
ATA
0 , first we note that by Corollary 4.16, [a0]

E
ATA
0

is the root node of TA.

Therefore we know that for any aj ∈ A, [a0]
E

ATA
0

�TA [aj]
E

ATA
n+1

. Additionally, by Corollary 4.16,

[a0]
E

ATA
0

�TA [a0]
E

ATA
n+1

. This implies a0E
ATA
i aj for any aj ∈ A. Therefore E

ATA
0 corresponds to

the equivalence relation under which everything in A is equal.

Under E
ATA
n+1 , for any aj , ak ∈ A, ajE

ATA
n+1 ak ⇐⇒ ∃ node x at level n + 1 of TA such that

x �TA [aj]
E

ATA
n+1

and x �TA [ak]
E

ATA
n+1

. Since both [aj]
E

ATA
n+1

and [ak]
E

ATA
n+1

are at level n+ 1 of TA by

Corollary 4.16, neither one of these nodes can have a strict predecessor that is also at level n + 1.

Therefore ∃ node x at level n + 1 of TA such that x = [aj]
E

ATA
n+1

and x = [ak]
E

ATA
n+1

. As nodes in

TA (and not as equivalence classes of ATA), x represents only one single node, and has a unique

representation, hence aj = ak. Therefore for any aj , ak ∈ A, ajE
ATA
n+1 ak =⇒ aj = ak, and E

ATA
n+1

corresponds to the equivalence relation of equality.

In Lemma 4.18 we let CATA
simply represent some set of equivalence classes, specifically equiva-

lence classes with the same syntax as the nodes of TA. Additionally, we proved that each equivalence

class in this set was indeed unique, and therefore our construction was well-defined. In Lemma 4.1,

though, we also built a unique representation of equivalence classes of a nested equivalence structure

and called it CA. Our notation in Lemma 4.18 was no coincidence, and now that we have built our

nested equivalence structure ATA , we can take this concept one step further and prove that TA and

CATA
are indeed the “same” sets. (They are identical in terms of notation, of course, but we still

think of elements of TA simply as strings of symbols, whereas elements of CATA
give a one to one

representation of equivalence classes.)

For the next lemma, we let CATA
be the enumeration of ATA -equivalence classes without repeti-

tion, as defined in Lemma 4.1, with the addition of equivalence classes E
ATA
0 and E

ATA
n+1 . We let TA

be as defined in Theorem 4.10.

Lemma 4.20. CATA
and TA represent syntactically the same set of elements, and are furthermore

(T ⊕A)-computable sets.

95

Proof. We will show here that h̃ : TA → CATA
is indeed “onto” in the sense we intended in

Lemma 4.18. We will prove here that if we created TA via our algorithm in Lemma 4.11 and

we created CATA
via our algorithm in Lemma 4.1, then TA and CATA

yield the exact same set of

elements. Note that both algorithms depended upon fixing some (A-computable) enumeration of A,

where A = {a0 < a1 < a2 < · · · }. Note also that the algorithm in Lemma 4.1 was given for equiv-

alence relations E1, . . . , En of a nested equivalence structure A. Given results of Lemma 4.19, we

can easily extend the algorithm to equivalence relations E
ATA
0 , . . . , E

ATA
n+1 of our nested equivalence

structure ATA .

First, we examine the algorithm to create TA. A detailed examination of the steps of that

algorithm gives the following.

[aj]
E

ATA
i

∈ TA ⇐⇒ pej ,i has no end-node successors which are smaller than ej

(where pej ,i = ith level predecessor of ej ,

and ej = the jth smallest end-node of T)

⇐⇒
�
x �T ej ∧ levelT (x) = i ∧ x �T ek

�
=⇒ ej ≤ ek

Now, we examine the algorithm to create CATA
. The details of that algorithm, extended to

include equivalence relations E
ATA
0 and E

ATA
n+1 nested appropriately, give the following.

[aj]
E

ATA
i

∈ CATA
⇐⇒ aj is the smallest element of the equivalence class [aj]

E
ATA
i

⇐⇒
�
akE

ATA
i aj =⇒ aj ≤ ak

�

⇐⇒

��
∃ node x at level i of TA s.t. x �TA [ak]

E
ATA
n+1

∧ x �TA [aj]
E

ATA
n+1

�

=⇒ aj ≤ ak

�
(applying defn of E

ATA
i from Equation 4.6)

⇐⇒
�
levelTA(x) = i ∧ x �TA [ak]

E
ATA
n+1

∧ x �TA [aj]
E

ATA
n+1

�
=⇒ aj ≤ ak

⇐⇒
�
levelT (h

-1
A (x)) = i ∧ h

-1
A (x) �T ek ∧ h

-1
A (x) �TA ej

�
=⇒ ej ≤ ek

(applying defn of “ ≺TA ” from Equation 4.5)

⇐⇒
�
levelT (y) = i ∧ y �T ek ∧ y �T ej

�
=⇒ ej ≤ ek

(because hA is onto)

Therefore we have that [aj]
E

ATA
i

∈ TA ⇐⇒ [aj]
E

ATA
i

∈ CATA
, as desired. Since TA is a

(T ⊕A)-computable set as shown in Lemma 4.13, this means that so too is CATA
.

96

The final step in our construction of a nested equivalence structure from a tree is to show that

this construction is (T ⊕A)-computable.

Lemma 4.21. The structure ATA = (A,E
ATA
1 , . . . , E

ATA
n) is (T ⊕ A)-computable. Hence h̃ is

(T ⊕A)-computable, and CATA
is (T ⊕A)-computable. Furthermore the equivalence relations E

ATA
0

and E
ATA
n+1 are also (T ⊕A)-computable.

Proof. We start by showing that ATA = (A,E
ATA
1 , . . . , E

ATA
n) is (T ⊕ A)-computable. Clearly, the

universe of ATA is (T ⊕A)-computable. Now to show that for each i, E
ATA
i is (T ⊕A)-computable,

we need to describe a (T ⊕ A)-computable process which takes as input some a, b ∈ A and some

i ∈ {0, . . . , n + 1} and tells whether aE
ATA
i b. Note again that our nested equivalence structure

involves only equivalence relations E
ATA
1 , . . . , E

ATA
n , but the proof extends easily for E

ATA
0 and

E
ATA
n+1 , so we include them here. Below is such a (T ⊕A)-computable process.

1. First, A-computably fix some enumeration of A = {a0, a1, . . .} such that a0 < a1 < · · · as in

Lemma 4.11, and determine which elements a and b correspond to. (That is, find j, k such

that a = aj and b = ak.) This is A-computable.

2. We now know that [aj]
E

ATA
n+1

, [ak]
E

ATA
n+1

∈ TA by Corollary 4.16. So next find the ith level

predecessors of [aj]
E

ATA
n+1

and [ak]
E

ATA
n+1

, call them x and y respectively. This is a (T ⊕ A)-

computable process since P[aj]
E

ATA
n+1

and P[ak]
E

ATA
n+1

(the sets of predecessors of [aj]
E

ATA
n+1

and

[ak]
E

ATA
n+1

, respectively) are (T ⊕A)-computable by Corollary 4.6 since TA is (T ⊕A)-computable

by Lemma 4.13. Additionally, levelT is (T ⊕A)-computable by Corollary 4.4.

3. Now ask x = y?

• If yes, then stop. We know that there is a node at level i of TA, namely node x = y,

such that x �TA [aj]
E

ATA
n+1

and x �TA [ak]
E

ATA
n+1

. Therefore ajE
ATA
i ak by our definition of

E
ATA
i in Equation 4.6, and hence we know that aE

ATA
i b.

• If no, then stop. We know that there is no node z at level i of TA such that z �TA [aj]
E

ATA
n+1

and z �TA [ak]
E

ATA
n+1

. (If such a node existed, it would have to equal both x and y, but

x �= y.) Therefore ¬(ajE
ATA
i ak) by our definition of E

ATA
i in Equation 4.6, and hence

we know that ¬(aE
ATA
i b).

Therefore E
ATA
i is (T ⊕A)-computable for all i ∈ {0, . . . , n+1}. This gives us that ATA is (T ⊕A)-

computable.

97

Additionally, CATA
is (T ⊕A)-computable since ATA is. Since as previously described, h̃ : TA →

CATA
is nothing more than the “identity” function, taking nodes in TA to their identical equivalence

class in CATA
, we have then that h̃ is also a (T ⊕A)-computable function.

This now completes the proof of Theorem 4.17. Again, we focus our examination on computable

trees, T , and computable sets A. The following corollaries are immediate.

Corollary 4.22. Given a computable tree TA as built from a computable tree T and a com-

putable set A as in Theorem 4.10 and Corollary 4.14, we can define a 1-1 and onto computable

function h̃ which takes nodes of TA and turns them into equivalence classes. These equivalence

classes are nested and therefore define the equivalence relations of a nested equivalence structure

ATA = (A,E
ATA
1 , . . . , E

ATA
n). Furthermore, this nested equivalence structure is itself computable.

Corollary 4.23. Given a computable tree TN as built from a computable tree T as in Theorem 4.10

and Corollary 4.15, we can define a 1-1 and onto computable function h̃ which takes nodes of TN

and turns them into equivalence classes. These equivalence classes are nested and therefore define

the equivalence relations of a nested equivalence structure ATN = (N, EATN
1 , . . . , E

ATN
n). Furthermore,

this nested equivalence structure is itself computable.

Finally, we combine the previous two theorems to yield our intended construction of a nested

equivalence structure. We can also focus our examination on computable trees and computable sets

yielding the corollaries below.

Theorem 4.24. Given a tree T = (T,≺T) which is full and has finite height n + 1 ≥ 2, and

given any infinite set A ⊆ N, we can (T ⊕ A)-computably define a nested equivalence structure

ATA = (A,E
ATA
1 , . . . , E

ATA
n). Furthermore, this nested equivalence structure is itself (T ⊕ A)-

computable.

Corollary 4.25. Given a computable tree T = (T,≺T) which is full and has finite height n+1 ≥ 2,

and given any infinite computable set A ⊆ N, we can computably define a nested equivalence structure

ATA = (A,E
ATA
1 , . . . , E

ATA
n). Furthermore, this nested equivalence structure is itself computable.

Corollary 4.26. Given a computable tree T = (T,≺T) which is full and has finite height n+1 ≥ 2,

we can computably define a nested equivalence structure ATN = (N, EATN
1 , . . . , E

ATN
n). Furthermore,

this nested equivalence structure is itself computable.

98

4.5 Nested Equivalence Structures to Trees

In this section we formalize the notions of going from a nested equivalence structure to a tree. Just

as in the prior section, the methods we describe here would work equally as well for trees and nested

equivalence structures with finite domains. However, we wish to focus our examination on trees and

nested equivalence structures with countably infinite domains.

So, given some finitely nested equivalence structure A = (A,E1, . . . , En), we now wish to build

a tree out of it. We will begin by building a tree out of the equivalence classes as we did with our

example in Section 4.3, only this time we will formally and algorithmically define the partial order

and the nodes. We will call the function which takes equivalence classes of the nested equivalence

structure and turns them into nodes of the tree ˆ̃
h. Next, we will take this tree and create one which

is computably isomorphic to it, simply by relabelling the nodes so that they come from N. We will

call this isomorphism ĥ. Below is a picture explaining just what we intend to do. We have built the

picture going from “right” to “left” so it is clear how it aligns with Figure 4.3 of Section 4.4.

· · ·

TAT

· · ·

TA

ĥT : TA → TAT

A�
A,E1, . . . , En

�

ˆ̃
h : CA → TA

Figure 4.4: Diagram representing the process to take a nested equivalence structure, A, with count-
ably infinite universe and a countably infinite set, T , and build a tree from it.

Note that we have named these two functions ĥ and ˆ̃
h intentionally, because they are certainly

closely related to the functions h and h̃ from Section 4.4 where we took a tree and turned it into

a nested equivalence structure. Though the functions ĥ and ˆ̃
h behave like inverses of h and h̃,

they are not exactly true inverses, as the functions depend upon the base underlying universes of

the structures, T and A, and their nesting and ordering properties. In fact, even if we were to

ensure that the universes always aligned and applied these functions in appropriate succession, our

methods here would not actually give us the exact same structure back that we started with, though

it would return one deg(A)-computably isomorphic to it. We will prove this later in Theorem 5.10

and Corollary 5.16.

In all of the steps to go from nested equivalence structures to trees, we will prove that both ˆ̃
h

and ĥ are 1-1, onto, computable, and preserve or create the desired structure. We first begin with

99

ˆ̃
h in the following theorem.

Theorem 4.27. Given an n-nested equivalence structure A = (A,E1, . . . , En) with infinite domain

A ⊆ N, we can define an A-computable, 1-1, and onto function
ˆ̃
h which takes unique equivalence

classes of A and A-computably builds a full tree, TA, of height n+ 1 in which each node represents

an equivalence class of A.

Proof. The proof is contained in Lemma 4.28 and Lemma 4.30.

.

Lemma 4.28. Let A = (A,E1, . . . , En) be a nested equivalence structure with infinite domain

A ⊆ N. We can define a function
ˆ̃
h which is A-computable, 1-1, and onto, and takes equivalence

classes of A and turns them into nodes of a tree TA = (TA,≺TA).

Proof. We begin by extending our nested equivalence structure A to include two additional equiv-

alence relations: E0 and En+1. Let E0 be the relation under which everything is equivalent, and

let En+1 be equality. It is easy to see that both are computable equivalence relations and they nest

inside of E1, . . . , En as follows:

En+1 ⊆ En ⊆ · · · ⊆ E1 ⊆ E0

Therefore, we can A-computably fix some enumeration of A = {a0 < a1 < a2 < · · · } and we

can extend Lemma 4.1 to create a list of all equivalence classes of A under E0, . . . , En+1 without

repetition. We call this set CA. Now, we let TA = CA in the following sense:

[aj]Ei ∈ CA ⇐⇒ [aj]Ei ∈ TA

[aj]Ei , [ak]E� ∈ TA =⇒
�
[aj]Ei = [ak]E� ⇐⇒ (i = � ∧ j = k)

�

[aj]Ei , [ak]E� ∈ CA =⇒
�
[aj]Ei = [ak]E� ⇐⇒ (i = � ∧ j = k)

�

[aj]Ei , [ak]E� ∈ {all equiv classes of A} =⇒
�
[aj]Ei = [ak]E� ⇐⇒ (i = � ∧ ajEiak)

�

As with h̃ in Lemma 4.18, we define ˆ̃
h to be the “identity” function, ˆ̃h : CA → TA. Clearly, then

this function is 1-1, onto, and A-computable.

We now take this set TA which was derived from the set CA of uniquely enumerated equivalence

classes of A without repetition, and turn them into nodes on a tree by defining the tree and the

100

partial order. Let TA = (TA,≺TA) with ≺TA and �TAdefined as follows.

[aj]Ei ≺TA [ak]E�

defn
⇐⇒ [aj]Ei ⊇ [ak]E� and i < � (4.7)

[aj]Ei �TA [ak]E�

defn
⇐⇒ [aj]Ei ⊇ [ak]E� and i ≤ � (4.8)

Note that [aj]Ei , [ak]E� on the right hand side of the above equations refers to the usual definition

of equivalence classes, in which [aj]Ei = [ak]E� ⇐⇒ (i = � ∧ ajEiak). On the other hand, [aj]Ei ,

[ak]E� on the left hand side of the above equations refers to (soon to be) nodes on the tree TA. These

nodes have a purely syntactical definition, in which nodes [aj]Ei = [ak]E� ⇐⇒ (i = � ∧ j = k).

Now, to prove that TA is indeed a tree, we must show that (1) ≺TA is a strict partial order on the

nodes of TA, and (2) ∀x ∈ TA the set of predecessors of x in TA is well-ordered by ≺TA . We begin

with (1) and let x, y, z ∈ TA. By the way we’ve defined nodes in TA, this means that x = [a]Ei ,

y = [b]Ej , and z = [c]Ek for some a, b, c ∈ A and some i, j, k ∈ {0, . . . , n+ 1}.

• Irreflexive: We first note that as equivalence classes in A, [a]Ei ⊇ [a]Ei , but in this case we

have that i = i. This implies x ⊀TA x since in our definition of “≺TA” in Equation 4.7, we

would need i < i.

• Transitive:

x ≺TA y and y ≺TA z ⇐⇒
�
[a]Ei ⊇ [b]Ej and i < j

�
and

�
[b]Ej ⊇ [c]Ek and j < k

�

⇐⇒
�
[a]Ei ⊇ [b]Ej ⊇ [c]Ek and i < j < k

�

=⇒
�
[a]Ei ⊇ [c]Ek and i < k

�

=⇒ x ≺TA z

• Assymmetric:

x ≺TA y =⇒ [a]Ei ⊇ [b]Ej and i < j =⇒ j �< i =⇒ y ⊀TA x

We now show (2), that the sets of predecessors are well-ordered. Let x be some node in TA, and

let Px represent the set of all predecessors of x in TA under ≺TA . Therefore we have that x = [aj]Ei

for some aj ∈ A and i ∈ {0, . . . , n+1}. Since A is a nested equivalence structure, each Ei-equivalence

101

class is nested exactly as follows with [aj]Ei contained in no other Ej-equivalence classes but these:

[aj]Ei ⊆ [aj]Ei−1 ⊆ [aj]Ei−2 ⊆ · · · ⊆ [aj]E1 ⊆ [aj]E0

Since each of the above equivalence classes are equivalence classes of A, they are each represented

exactly once in CA. Furthermore, recalling Equation 4.1, if we let ajk be the smallest element of

[aj]Ek for each k ∈ {0, 1, . . . , i− 1}, we get:

[aj]Ei ⊆ [aji−1]Ei−1 ⊆ [aji−2]Ei−2 ⊆ · · · ⊆ [aj1]E1 ⊆ [aj0]E0 ,

where each of the above listed equivalence classes is the representative in CA for the corresponding

equivalence class of aj . Therefore the nodes [aj0]E0 , [aj1]E1 , . . . , [aji−1]Ei−1 are all also in TA.

Additionally, under the definition of ≺TA in Equation 4.7, this =⇒ Px = {[aji−1]Ei−1 , [aji−2]Ei−2 ,

. . ., [aj1]E1 , [aj0]E0}, with the members of Px ordered as follows:

[aj0]E0 ≺TA [aj1]E1 ≺TA . . . ≺TA [aji−2]Ei−2 ≺TA [aji−1]Ei−1

Now, clearly any subset of Px has a least element – just take [ajk]Ek for the smallest (under the

usual ordering of N) value of k contained in the subset. Therefore Px is well-ordered, as desired.

Therefore we have built a universe of nodes for TA and a strict partial order ≺TA on that universe

which well-orders the set of predecessors of any given node. Therefore TA is indeed a tree.

Note that in the prior lemma we are abusing notation slightly in reference to CA. As built in

Lemma 4.1, CA represented the set of all equivalence classes of A enumerated uniquely and without

repetition, for A = (A,E1, . . . , En). We are still now examining A = (A,E1, . . . , En), but we have

added two additional computable equivalence relations nested as expected, E0 and En+1. In the

proofs of these lemmas and theorems, we now use CA to refer to the list of all equivalence classes of

A under E0, . . . , En+1 enumerated uniquely and without repetition. The difference in notation —

whether CA refers to equivalence classes under E1, . . . , En or under E0, . . . , En+1 — should be clear

from the context.

Corollary 4.29. Given a nested equivalence structure A as in Theorem 4.27, let TA = (TA,≺TA)

where TA = CA and ≺TA is defined as in Equation 4.7. Then the following properties hold:

1. ht(TA) = n+ 1

102

2. levelTA([aj]Ei) = i for each [aj]Ei ∈ TA

3. TA has infinitely many nodes at level n+ 1

4. TA is a full tree

Proof. We fix some enumeration of A = {a0 < a1 < · · · }. First we prove that ht(TA) = n+ 1. We

know that [a0]E0 , [a0]E1 , . . ., [a0]En+1 are all in CA and hence in TA since we enumerated them all

into CA as part of the first step of Lemma 4.1. Because A is nested we know that:

[a0]E0 ⊇ [a0]E1 ⊇ · · · ⊇ [a0]En ⊇ [a0]En+1

We also note that 0 < 1 < · · · < n < n+ 1. Now, recalling the definition of ≺TA from Equation 4.7,

we then have that:

[a0]E0 ≺TA [a0]E1 ≺TA · · · ≺TA [a0]En ≺TA [a0]En+1

Therefore we have created a path of length n+2 on our tree TA. Therefore ht(TA) ≥ n+1. We wish

to show that additionally, ht(TA) ≤ n+ 1. Assume to the contrary that ht(TA) > n+ 1, and hence

there exists a path of length > n+2. Then we have (n+3)-many nodes, call them x0, . . . , xn+2 ∈ TA

such that x0 ≺TA · · · ≺TA xn+2. Since each xj ∈ TA, we know that each is of the form xj = [akj]E�j

where j ∈ {0, . . . , n + 2}, �j ∈ {0, . . . , n + 1} and kj ∈ N, and as in Equation 4.7 the �j ’s must

form a chain under “<”. Without loss of generality, assume �0 < �1 < · · · < �n+1 < �n+2. But

each �j ∈ {0, . . . , n + 1}, and therefore we have a list of (n + 3)-many numbers strictly ordered in

which any single number can be one of only (n+ 2)-many choices. The pigeon-hole principle states

that this is impossible, and we must have at least two of �0, . . . , �n+2 being equal, a contradiction.

Therefore there is no path in TA of length > n+ 2, and hence ht(TA) ≤ n+ 1. Taking this together

we have ht(TA) ≥ n+ 1 and ht(TA) ≤ n+ 1, yielding ht(TA) = n+ 1.

Now, consider [aj]En+1 for j ∈ N. By defining En+1 to be the equivalence relation of “=”, and

by our method of creating CA in Lemma 4.1, we know that for each j ∈ N, [aj]En+1 ∈ CA = TA.

Because A is a nested equivalence structure, as equivalence classes we have that:

[aj]E0 ⊇ [aj]E1 ⊇ · · · ⊇ [aj]En ⊇ [aj]En+1

Note however that this is a list of equivalence classes in A, and except for [aj]En+1 we don’t know if

each of these is in CA. What we do know is that each of these [aj]Ei equivalence classes is represented

somewhere in CA. In other words, there exists aj0 , . . . , ajn ∈ A such that [aj]Ei = [aji]Ei and

103

[aji]Ei ∈ CA = TA for each i ∈ {0, . . . , n}. Therefore

[aj0]E0 ⊇ [aj1]E1 ⊇ · · · ⊇ [ajn]En ⊇ [aj]En+1 ,

and note that 0 < 1 < · · · < n+ 1. Therefore applying Equation 4.7 for our definition of “≺TA”,

[aj0]E0 ≺TA [aj1]E1 ≺TA · · · ≺TA [ajn]En ≺TA [aj]En+1

Therefore we have put [aj]En+1 as the greatest element of a path of length n+ 2 under ≺TA . Since

we know that ht(TA) = n + 1, there can be no paths of length > n + 2, so there can be no other

elements in this path. Furthermore, since ht(TA) = n+1, the only way a path like this can exist is if

levelTA([aj0]E0) = 0, levelTA([aj1]E1) = 1, . . . , levelTA([ajn]En) = n, and levelTA([aj]En+1) = n+ 1.

Since aj was chosen arbitrarily, we can do this for all of A = {a0 < a1 < · · · } and in this way

we have represented every equivalence class in CA via this method. Since CA = TA, we get that

for any [ak]Ei ∈ TA, levelTA([ak]Ei) = i. Furthermore, since for each j ∈ N, [aj]En+1 ∈ TA and

levelTA([aj]En+1) = n+ 1, this yields that TA has infinitely many nodes at level n+ 1.

Now, for any [ak]E� ∈ TA, we know that [ak]En+1 ∈ TA, and we can create such a path of

(n+ 2)-many nodes following the above method:

[ak0]E0 ≺TA [ak1]E1 ≺TA · · · ≺TA [ak�−1]E�−1 ≺TA [ak]E� ≺TA · · · ≺TA [ak]En+1

Since we can do this for any node in TA, this means that every node of the tree TA is on a path of

exactly length n+ 2. This means that all paths through TA are of the same length, namely length

n+2, and hence TA is a full tree.

Now, let TA = (TA,≺TA) be the tree as built in Lemma 4.28. We now show that, as built, this

tree is indeed computable relative to A.

Lemma 4.30. TA = (TA,≺TA) is A-computable.

Proof. To show that TA is A-computable, we need to show that both TA and ≺TA are A-computable.

Beginning first with TA, we recall that as built, TA“=”CA. We already proved in Lemma 4.1 that

CA is an A-computable set. Therefore, given some node of the form [a]Ei we can A-computably tell

whether it is in the set TA.

104

Now, to show that ≺TA is A-computable, we need to show that given two nodes [aj]Ei , [ak]E� ∈

TA, we can A-computably decide whether [aj]Ei ≺TA [ak]E� . Recalling the definition of ≺TA given

in Equation 4.7, we describe an A-computable process below.

1. First, we check whether i < �. This is a computable process.

• If no, then stop. We know that [aj]Ei ⊀TA [ak]E� .

• If yes, then keep going.

2. Then check whether ajEiak. This is an A-computable process since Ei is A-computable for

each i ∈ {0, . . . , n+ 1}.

• If yes, then stop. By Lemma 4.2 [aj]Ei ⊇ [ak]E� , and hence [aj]Ei ≺TA [ak]E� .

• If no, then stop. By Lemma 4.2 [aj]Ei �⊇ [ak]E� , and hence [aj]Ei ⊀TA [ak]E� .

Therefore ≺TA is also A-computable, as desired. Hence the tree TA as built in Lemma 4.28 is an

A-computable tree.

This completes the proof of Theorem 4.27. The following corollary is immediate.

Corollary 4.31. Given a computable n-nested equivalence structure A = (A,E1, . . . , En) with in-

finite domain A ⊆ N, we can define a computable, 1-1, and onto function
ˆ̃
h which takes unique

equivalence classes of A and computably builds a full tree, TA, of height n + 1 in which each node

represents an equivalence class of A.

Theorem 4.32. Let TA = (TA,≺TA) be a full tree of height n+1 as built in Theorem 4.27, in which

each node represents a unique equivalence class of a nested equivalence structure A = (A,E1, . . . , En)

with infinite domain A ⊆ N. Let T ⊆ N be any infinite set. Then we can define a function ĥT which

will (T ⊕A)-computably build a tree, TAT = (TAT ,≺TAT
), which is isomorphic to TA and which is

itself (T ⊕A)-computable.

Proof. The proof is contained in the following lemmas: Lemma 4.33, Lemma 4.34, Lemma 4.35,

Lemma 4.36, and Lemma 4.38.

Lemma 4.33. Let TA = (TA,≺TA) be a full tree of height n + 1 as built in Theorem 4.27 and let

T ⊆ N be any infinite set. Then we can define a function ĥT : TA → T which transforms equivalence

classes into to natural numbers and is (T ⊕A)-computable.

105

Proof. We let TA = (TA,≺TA) be a full tree of height n + 1 as built in Theorem 4.27 and let

T ⊆ N be any infinite set. Fix some enumeration of T = {t0 < t1 < t2 < · · · }. Addition-

ally, fix some A-computable enumeration of equivalence classes of A without repetition, CA =

{[c0]Ei0
, [c1]Ei1

, [c2]Ei2
, . . .} with cj ∈ A, and ij ∈ {0, . . . , n + 1}. Since we built TA = (TA,≺TA)

such that CA = TA, this means that we have some A-computable enumeration of nodes of TA in

which [cj]Eij
is the jth node in this enumeration (because it is the jth equivalence class in the

enumeration of CA). Now define ĥT : TA → T as follows:

ĥT ([cj]Eij
)
defn
= tj (4.9)

To show that ĥT is (T ⊕ A)-computable, given some input [a]Ei ∈ TA we need to show that we

can compute ĥT ([a]Ei). To do this, we simply A-computably enumerate CA until [a]Ei shows up.

Since [a]Ei ∈ TA, we are guaranteed this happens at some finite point. Say, [a]Ei shows up as the

jth equivalence class enumerated. Then, we T -computably enumerate T in order until we have

enumerated the jth element of T = {t0 < t1 < · · · }. Then we set ĥ([a]Ei) = j and halt.

Lemma 4.34. Let TA = (TA,≺TA) be a full tree of height n + 1 as built in Theorem 4.27 and let

T ⊆ N be any infinite set. Then the function ĥT defined in Lemma 4.33 is both 1-1 and onto.

Proof. To show ĥT is 1-1, we let x, y ∈ TA such that ĥT (x) = ĥT (y). Since x, y ∈ TA, they must be

of the form x = [cj]Eij
, y = [ck]Eik

for some j, k ∈ N, ij , ik ∈ {0, . . . , n+ 1}.

ĥT (x) = ĥT ([cj]Eij
) = j = ĥT ([ck]Eik

) = ĥT (y) = k

Therefore j = k, hence [cj]Eij
= [ck]Eik

and x = y.

To show that ĥT is onto, we let t ∈ T . Then t = tj for some jth element of T in the T -computable

enumeration T = {t0 < t1 < t2 < · · · }. Now, we let [cj]Eij
represent the jth element in the A-

computable enumeration of CA. Then ĥT ([cj]Eij
) = tj = t, and there exists some element of TA,

namely [cj]Eij
, such that applying ĥT to it yields t.

Since ĥT simply relabels the nodes of TA in a unique, 1-1 and onto manner, we can define a tree,

TAT = (TAT ,≺TAT
). Now, we let TAT = T for our given infinite set T ⊆ N, and we let ≺TAT

be

inherited directly from ≺TA . That is,

ĥT ([aj]Ei) ≺TAT
ĥT ([ak]E�)

defn
⇐⇒ [aj]Ei ≺TA [ak]E� (4.10)

106

Equivalently,

x ≺TAT
y

defn
⇐⇒ ĥ

-1
T (x) ≺TA ĥ

-1
T (y) (4.11)

We now prove what is intuitively fairly obvious — that TAT is indeed a tree and furthermore it is

isomorphic to TA. We also prove that the construction is (T ⊕A)-computable.

Lemma 4.35. Let A = (A,E1, . . . , En) be a nested equivalence structure and let TA = (TA,≺TA)

be its corresponding full tree of height n + 1 as built in Theorem 4.27. Let T ⊆ N be any infinite

set, let ĥT be as defined in Lemma 4.33, and let ≺TAT
be as defined in Equation 4.10. Then

TAT = (TAT ,≺TAT
) where TAT = T defines a tree.

Proof. To show that TAT = (TAT ,≺TAT
) is a tree, we must show that (1) ≺TAT

is a strict partial

order on TAT = T , and that (2) ∀x ∈ TAT , the set of predecessors of x in TAT is well-ordered. We

begin with (1) and let tj , tk, t� ∈ TAT = T , and let [cj]Eij
, [ck]Eik

, [c�]Ei�
be the syntactic equivalents

in TA of, respectively, the jth, kth, and �th equivalence classes in our enumeration of CA. Then, by

the way we defined ĥT , we know that ĥT ([cj]Eij
) = tj , ĥT ([ck]Eik

) = tk, and ĥT ([c�]Ei�
) = t�.

• Irreflexive:

tj ≺TAT
tj ⇐⇒ [cj]Eij

≺TA [cj]Eij

⇐⇒ [cj]Eij
⊇ [cj]Eij

and ij < ij

Since we know that for ij ∈ {0, . . . , n+ 1}, ij �< ij , this means that tj ⊀TAT
tj , as desired.

• Transitive:

tj ≺TAT
tk ∧ tk ≺TAT

t� ⇐⇒ [cj]Eij
≺TA [ck]Eik

∧ [ck]Eik
≺TA [c�]Ei�

=⇒ [cj]Eij
≺TA [c�]Ei�

(since ≺TA transitive)

⇐⇒ tj ≺TAT
t�

• Assymmetric:

tj ≺TAT
tk ⇐⇒ [cj]Eij

≺TA [ck]Eik

=⇒ [ck]Eik
⊀TA [cj]Eij

(since ≺TA assymetric)

⇐⇒ tk ⊀TAT
tj

107

Now we show (2) that predecessors are well-ordered under ≺TAT
. Again let tj ∈ TAT = T ,

and let [cj]Eij
be the syntactic equivalent in TA of the jth equivalence class in our enumeration of

CA. Now, let {tp1 , . . . , tpr} be predecessors of tj under ≺TAT
and let [cp1]Eip1

, . . ., [cpr]Eipr
be the

syntactic equivalents, respectively, in TA of the p1th, . . ., prth equivalence classes in our enumeration

of CA. By the way we defined ĥT we know that

ĥT ([cj]Eij
) = tj

ĥT ([cp1]Eip1
) = tp1

...

ĥT ([cpr]Eipr
) = tpr

Additionally, because ≺TAT
is inherited directly from ≺TA as in Equation 4.10, we know that

{[cp1]Eip1
, . . . , [cpr]Eipr

} are all predecessors of [cj]Eij
under ≺TA . Therefore this set is well-ordered

under ≺TA since we already showed that TA is a tree; let [cp0]Eip0
be its least element under ≺TA .

This means that for all k ∈ {1, . . . , r},

[cp0]Eip0
�TA [cpk]Eipk

⇐⇒ ĥT ([cp0]Eip0
) �TA ĥT ([cpk]Eipk

)

(by Equation 4.10)

⇐⇒ tp0 �TAT
tpk

Since this happens for each k ∈ {1, . . . , r}, therefore tp0 is the least element of {tp1 , . . . , tpr}. Since

tj and its predecessors were chosen arbitrarily, hence any set of predecessors has a least element and

is therefore well-ordered under ≺TAT
, as desired.

Lemma 4.36. Let TA = (TA,≺TA) be a full tree of height n + 1 as built in Theorem 4.27 and

let T ⊆ N be any infinite set. Then the function ĥT : TA → TAT defined in Lemma 4.33 is a

(T ⊕A)-computable isomorphism.

Proof. We already showed that as defined, ĥT is 1-1 and onto and (T ⊕A)-computable. Therefore,

we need now only show that order is preserved under ĥT . In other words, we need to show that:

x ≺TA y ⇐⇒ ĥT (x) ≺TAT
ĥT (y)

108

First we note that if x, y ∈ TA this means that x = [cj]Eij
and y = [ck]Eik

for some cj , ck ∈ A

and ij , ik ∈ {0, . . . , n + 1}, where [cj]Eij
, [ck]Eik

are the jth and kth equivalence classes in our

enumeration of CA. We also note that we took preservation of order as our definition of ≺TAT
in

Equation 4.10, and we have:

ĥT ([cj]Eij
) ≺TAT

ĥT ([ck]Eik
) ⇐⇒ [cj]Eij

≺TA [ck]Eik

Therefore ĥT is a (T ⊕A)-computable isomorphism.

Now that we have confirmed that TAT = (TAT ,≺TAT
) is indeed a tree, and furthermore it is

isomorphic to TA, the following properties follow immediately from Corollary 4.29.

Corollary 4.37. The tree TAT = (TAT ,≺TAT
) as built in Lemma 4.35 has the following properties:

1. ht(TAT) = n+ 1

2. levelTAT
(tj) = i, where [cj]Ei is the jth equivalence class in our enumeration of CA

3. TAT has infinitely many nodes at level n+ 1

4. TAT is a full tree

Lemma 4.38. The tree TAT = (TAT ,≺TAT
) is (T ⊕A)-computable.

Proof. We first need to show that TAT is (T ⊕ A)-computable. But we built TAT = T , so this is

clearly a T -computable set.

We now show that ≺TAT
is (T ⊕ A)-computable. Given x, y ∈ TAT , below is a process to

determine whether x ≺TAT
y.

1. Given x, y ∈ TAT use a T -oracle to start enumerating elements of T in order: t0 < t1 < · · ·

until x and y have both been enumerated. Determine k, � such that tk = x and t� = y.

2. Then, using an A-oracle, enumerate equivalence classes of CA, until both the kth and the �th

equivalence classes have been enumerated, call them [ck]Ei and [c�]Ej respectively.

3. By Lemma 4.33 we know that ĥT is (T ⊕A)-computable. So calculate ĥT on inputs [ck]Ei and

[c�]Ej . This will yield ĥT ([ck]Ei) = tk = x and ĥT ([c�]Ej) = t� = y.

4. Now, by Lemma 4.30 we know that TA is an A-computable tree. Therefore, A-computably

determine whether [ck]Ei ≺TA [c�]Ej .

109

• If yes, then stop. We know, by the definition given in Equation 4.10, that [ck]Ei ≺TA [c�]Ej

⇐⇒ ĥT ([ck]Ei) ≺TAT
ĥT ([c�]Ej), and therefore x ≺TAT

y.

• If no, then stop. We know, by the definition given in Equation 4.10, that [ck]Ei ⊀TA [c�]Ej

⇐⇒ ĥT ([ck]Ei) ⊀TAT
ĥT ([c�]Ej), and therefore x ⊀TAT

y.

The above process relies only on oracles for T and A. Therefore ≺TAT
is (T ⊕ A)-computable as

desired, and TAT is a (T ⊕A)-computable tree.

This completes the proof of Theorem 4.32. Focusing our examination on computable nested

equivalence structures, we get the following corollaries.

Corollary 4.39. Let TA = (TA,≺TA) be a full tree of height n + 1 as built in Theorem 4.27

and Corollary 4.31, in which each node represents a unique equivalence class of a computable nested

equivalence structure A = (A,E1, . . . , En) with infinite domain A ⊆ N. Let T ⊆ N be any computable

infinite set. Then we can define a function ĥT which will computably build a tree TAT = (TAT ,≺TAT
)

which is isomorphic to TA and which is itself computable.

Corollary 4.40. Let TA = (TA,≺TA) be a full tree of height n + 1 as built in Theorem 4.27 and

Corollary 4.31, in which each node represents a unique equivalence class of a computable nested

equivalence structure A = (A,E1, . . . , En) with infinite domain A ⊆ N. Then we can define a

function ĥN which will computably build a tree, TAN = (TAN ,≺TAN) which is isomorphic to TA and

which is itself computable.

Now, we can combine Theorem 4.27 with Theorem 4.32 to yield our intended construction of

a tree. We can also focus our examination on computable nested equivalence structures and com-

putable sets, resulting in the following immediate corollaries.

Theorem 4.41. Given an n-nested equivalence structure A = (A,E1, . . . , En) with infinite domain

A ⊆ N, and given any infinite set T ⊆ N, we can build a full, (T ⊕ A)-computable tree, TAT =

(TAT ,≺TAT
), which has finite height n+1 and which converts the equivalence classes of A into nodes

on the tree, and furthermore displays the nesting properties, “⊆”, of A, as branching properties,

“≺TAT
”, on TAT .

Corollary 4.42. Given a computable n-nested equivalence structure A = (A,E1, . . . , En) with infi-

nite domain A ⊆ N, and given any infinite computable set T ⊆ N, we can build a full, computable

tree, TAT = (TAT ,≺TAT
), which has finite height n+1 and which converts the equivalence classes of

A into nodes on the tree, and furthermore displays the nesting properties, “⊆”, of A, as branching

properties, “≺TAT
”, on TAT .

110

Corollary 4.43. Given a computable n-nested equivalence structure A = (A,E1, . . . , En) with in-

finite domain A ⊆ N, we can build a full, computable tree, TAN = (TAN ,≺TAN), which has finite

height n+1 and which converts the equivalence classes of A into nodes on the tree, and furthermore

displays the nesting properties, “⊆”, of A, as branching properties, “≺TAN”, on TAN .

4.6 Putting It All Together

Taking Theorem 4.24 and Theorem 4.41 together, we can now computably go back and forth between

nested equivalence structures and trees. The notation we have used for each part is almost a mirror

image of the other. In Theorem 4.24 we began with a tree, T = (T,≺T), took a set A ⊆ N and

built an isomorphic tree, TA = (TA,≺TA), from it. From there, we then finally built a nested

equivalence structure, ATA = (A,E
ATA
1 , . . . , E

ATA
n). Conversely, in Theorem 4.41 we began with a

nested equivalence structure A = (A,E1, . . . , En), built an intermediate tree TA = (TA ≺TA) from

it, and then finally relabelled nodes so they consisted of natural numbers from some set T , to yield

a tree TAT = (TAT ,≺TAT
).

If we examine this notation carefully we see that the trees and nested equivalence structures are

not entirely mirror images of each other. For instance, TA and TA do not represent identical objects.

The structure of the tree TA built from a nested equivalence structure A depends entirely upon the

construction of the nested equivalence structure and its properties. The structure of the tree TA

built from a tree T and a set of natural numbers A depends entirely upon the construction and

the properties of the given tree, T , and almost not at all on the set of numbers A. The set A only

provides a labelling convention and does not contribute any structure to the built tree.

If we examine Figure 4.3 and Figure 4.4 together, and we follow our methods of Theorem 4.24

and Theorem 4.41 together we may not get what we expect. For instance, if we take a tree T as

input, create a nested equivalence structure ATA out of it, and then create a tree T(ATA
)
T
back out

of ATA , we will not get our original tree T back in return. That is, it is not necessarily true that

T = T(ATA
)
T
. Similarly, it is also not necessarily true that A = A(TAT

)
A
. This remains the case

even if we ensure that the domains we feed our algorithms (either A or T) remain exactly the same

at each point through the process.

On the surface, this many seem like an unfortunate result. Our efforts have not been in vain,

however. While we may not get back the exact same structure in return, we will indeed get back

a computably isomorphic one. That is, taking Theorem 4.24 and Theorem 4.41 together we do

have that T �T ⊕A T(ATA
)
T

and A �T⊕A A(TAT
)
A
, and in particular for computable sets and

111

structures, T �c T(ATA
)
T

and A �c A(TAT
)
A
. (We formally prove these results in Theorem 5.10

and Corollary 5.16.) Therefore, applying Theorem 4.24 and Theorem 4.41, we not only preserve the

structure of the given object (nested equivalence structure or tree), but we do so computably, and

hence preserve their computability-theoretic properties when going back and forth between the two.

We further explore this concept in the following chapter.

112

Chapter 5

Category-Theoretic Notions of

Trees and Nested Equivalence

Structures

In the previous chapter, we formalized algorithms to go back and forth between nested equivalence

structures and trees of finite height. These algorithms worked in the most generic sense. They

took any domain, A or T , as input, and output a nested equivalence structure or a tree with that

given domain. Additionally, these algorithms were computable relative to the various inputs (either

a tree T and domain A, or a nested equivalence structure A and a domain T). We now turn our

attention to the language of category theory to further solidify these notions of going between nested

equivalence structures and trees. By using the concepts and tools of categories and functors, we can

in this way take our generic algorithms of the previous section and fix a specific method to turn a

given tree into a nested equivalence structure and vice versa. Once fixing these specific methods, we

can then show that many nice properties hold. In particular, the structures we build will maintain

isomorphisms and Turing computability.

We build off of existing work which uses similar tools to transfer computability-theoretic results

about one type of structure to another. For instance, in [28] Hirschfeldt, Khoussainov, Shore, and

Slinko took a certain class of countable structures and turned them into a certain class of graphs,

such that isomorphisms between the initial two structures were maintained as isomorphisms between

the graphs. In [35] Miller, Park, Poonen, Schoutens, and Shlapentokh then expanded upon this work

113

and built a functor, then, from a certain class of graphs to a certain class of fields and similarly

extended the computability-theoretic results. In [38] Ocasio and Knight transferred results from

countable real closed fields to countable linear orders. And in [26], Harrison-Trainor, Melnikov,

Miller, and Montalbán considered effective interpretability of a structure and examined this notion

within the context of computable functors. We now continue here and use category-theoretic notions

to examine nested equivalence structures and trees of finite height.

Before proceeding, we note that the methods we will use in this section would work equally

well for trees and nested equivalence structures with finite domains. Because finite height trees

with finite domain are necessarily finite, and so too are finitely nested equivalence structures with

finite domains, we wish to concentrate here on the more general case — where our tree or nested

equivalence structure has countably infinite domain.

5.1 The Categories: FFT and NEquiv

To use the tools of category theory to discuss trees and nested equivalence structures, we first

begin by defining appropriate categories for each. Theorem 4.24 required that in order to build a

finitely nested equivalence structure, we first must begin with a full finite height tree with at least

3 levels (height ≥ 2). Furthermore, Corollary 4.37 confirmed that if we began with a finitely nested

equivalence structure with at least one equivalence relation, the tree that we built would be full, and

of finite height ≥ 2.

We formally define FFT to be the category of full finite height trees with infinite domain and

height ≥ 2, as follows. An object in FFT consists of a tree, T = (T,≺T), which satisfies all of the

following conditions:

• T ⊆ N is infinite

• ≺T is a strict partial order on T under which sets of predecessors are well-ordered

• 2 ≤ ht(T) < ω

• All paths in T are of the same length, that is T is full

A morphism in FFT consists of an isomorphism between trees. That is, for full finite height trees

T ,S ∈ FFT, f : T → S is a morphism in FFT iff f : T → S is a 1-1 and onto function which

preserves order:

x ≺T y ⇐⇒ f(x) ≺S f(y)

114

To confirm that FFT is indeed a category in the formal sense, we must check that composition of

isomorphisms between trees is still an isomorphism, composition is associative, and that unity for

morphisms is satisfied. We do that now.

Theorem 5.1. FFT is a category.

Proof. Let T ,S,U ,V ∈ FFT be trees, and let f : T → S, g : S → U , and h : U → V be isomorphisms

on these trees. We begin by checking that composition of isomorphisms between full, finite height

trees is still an isomorphism between full finite height trees. This is a straightforward result. We

know that (g ◦ f) : T → U is both 1-1 and onto since both g and f are. Therefore (g ◦ f)(T) = U ,

and we already know that U ∈ FFT. Additionally (g ◦ f) preserves order as shown below:

x ≺T y ⇐⇒ f(x) ≺S f(y) (since f preserves order)

⇐⇒ g(f(x)) ≺U g(f(y)) (since g preserves order)

⇐⇒ (g ◦ f)(x) ≺U (g ◦ f)(y)

Now, we check that composition is indeed associative. We need to show that h◦(g◦f) = (h◦g)◦f .

Let x ∈ T . We do so below.

�
h ◦ (g ◦ f)

�
(x) = h ◦

�
(g ◦ f)(x)

�
= h ◦

�
g(f(x))

�
= h

�
g(f(x))

�

�
(h ◦ g) ◦ f

�
(x) = (h ◦ g)(f(x)) = h

�
g(f(x))

�

Finally, we check that unity for morphisms is satisfied. In particular, the identity function, Id,

will do just that. Clearly Id is 1-1 and onto. Additionally Id preserves order. To see this, consider

Id : T → T . Then,

x ≺T y ⇐⇒ Id(x) = x ≺T y = Id(y) ⇐⇒ Id(x) ≺T Id(y)

Therefore Id is indeed an isomorphism. Furthermore, Id satisfies unity of morphisms. Taking f as

above we have,

(IdS ◦ f)(x) = IdS
�
f(x)

�
= f(x)

(f ◦ IdT)(x) = f
�
IdT (x)

�
= f

�
x
�

Therefore FFT is a category.

115

We formally define NEquiv to be the category of finitely nested equivalence structures with

infinite domain, as follows. An object in NEquiv consists of a nested equivalence structure A =

(A,E1, . . . , En) which satisfies all of the following conditions:

• A ⊆ N is infinite

• E1, . . . , En are equivalence relations on A

• 0 < n < ω

• ∀a ∈ A, [a]E1 ⊇ [a]E2 ⊇ · · · ⊇ [a]En

A morphism in NEquiv consists of an isomorphism between nested equivalence structures. That

is, for nested equivalence structures A = (A,E1, . . . , En), and B = (B,R1, . . . , Rn), each morphism

f : A → B consists of a 1-1 and onto function f : A → B which preserves equivalence relations:

∀i ∈ {1, . . . , n}, xEiy ⇐⇒ f(x)Rif(y)

Note that if equivalence relations are preserved, then so is their nesting. Let a ∈ A. Then we

have,

x ∈ [a]Ei ⇐⇒ xEia ⇐⇒ f(x)Rif(a) ⇐⇒ f(x) ∈ [f(a)]Ri

∴ [a]Ei+1 ⊆ [a]Ei ⇐⇒

�
x ∈ [a]Ei+1 =⇒ x ∈ [a]Ei

�

⇐⇒

�
f(x) ∈ [f(a)]Ri+1 =⇒ f(x) ∈ [f(a)]Ri

�

⇐⇒ [f(a)]Ri+1 ⊆ [f(a)]Ri

Therefore, when building isomorphisms between nested equivalence structures, it is only necessary

to ensure that each of the equivalence relations is preserved under the isomorphism; the desired

nesting will then follow as an immediate consequence.

To confirm that NEquiv is indeed a category in the formal sense, we now must check that

composition of isomorphisms between nested equivalence structures is still an isomorphims, that

composition is associative, and that unity for morphisms is satisfied. These results are all straight-

forward.

Theorem 5.2. NEquiv is a category.

116

Proof. Let A,B, C,D ∈ NEquiv be n-nested equivalence structures with equivalence relations Ei,

Ri, Pi, and Qi for i = 1, . . . , n respectively. Let f : A → B, g : B → C, and h : C → D.

We first check that composition of isomorphisms between nested equivalence structures yields an

isomorphism between nested equivalence structures. First, both g and g are 1-1 and onto since they

are isomorphisms, therefore (g◦f) : A → C is 1-1 and onto. Furthermore, (g◦f)(A) = C ∈ NEquiv.

Now to see that (g ◦ f) preserves equivalence relations let i ∈ {1, . . . , n},

xEiy ⇐⇒ f(x)Rif(y) (since f preserves equiv. rltns)

⇐⇒ g(f(x))Pig(f(y)) (since g preserves equiv. rltns)

⇐⇒ (g ◦ f)(x)Pi(g ◦ f)(y)

Therefore composition of isomorphisms between n-nested equivalence structures yields an isomor-

phism between n-nested equivalence structures.

Next, we check that composition of isomorphisms is associative. First we note that:

�
h ◦ (g ◦ f)

�
(x) = h ◦

�
(g ◦ f)(x)

�
= h ◦

�
g(f(x))

�
= h

�
g(f(x))

�

And next we see that:
�
(h ◦ g) ◦ f

�
(x) = (h ◦ g)(f(x)) = h

�
g(f(x))

�

Therefore h ◦ (g ◦ f) = (h ◦ g) ◦ f , and hence composition of isomorphisms of nested equivalence

structures is associative.

Finally, we need to check that there is a unity morphism in NEquiv. Note that the identitiy

function, Id, will again do just that. Clearly Id is 1-1 and onto. Additionally, Id preserves equivalence

relations as noted below for i ∈ {1, . . . , n}

xEiy ⇐⇒ Id(x) = xEi y = Id(y) ⇐⇒ Id(x)EiId(y)

Therefore Id is an isomorphism between nested equivalence structures. Additionally, Id satisfies the

necessary unity properties.

(IdS ◦ f)(x) = IdS
�
f(x)

�
= f(x)

(f ◦ IdT)(x) = f
�
IdT (x)

�
= f

�
x
�

Therefore NEquiv satisfies all the necessary conditions, and NEquiv is indeed a category.

117

Before moving on, we note the standard abuse of notation here. As a morphism, f takes one

object to another in a given category. In both of our categories, FFT and NEquiv, objects are

structures. Therefore, a morphism f takes one structure to another in these categories. As function,

however, f takes the domain of one structure to the domain of another structure. Since we are

considering morphisms in FFT and NEquiv to be functions which are isomorphisms on their

respective structures, the structure is maintained under this application of the function to the

respective domains. Therefore, for our purposes it is appropriate to talk about a “function” f

taking one structure to another, or about a “morphism” f being a function on the domains of

structure. We will use these concepts almost interchangeably.

5.2 Functor from FFT to NEquiv

Now that we have defined the categories FFT and NEquiv, we can build functors which fix a

specific method of going between trees and nested equivalence structures.

Eventually, we wish for these functors to be full, faithful, essentially onto, and computable relative

to the various structures involved. To clarify what we need to show, Figure 5.1 shows the functor

F : FFT → NEquiv and describes all the different interim functions that we will use in our various

definitions and proofs.

118

···

T

S

···

T

S

f
f̃

···

TA

SB

···

hN

ĥN

hN

ĥN

A

B

A

B

h̃

ˆ̃
h

h̃

ˆ̃
h

g̃ g

F (T)

F (S)

Figure 5.1: Diagram representing the functor, F , from the category FFT to the category NEquiv

and representing all associated sub-mappings in between.

We now define a functor F : FFT → NEquiv. Since functors take objects to objects and

morphisms to morphisms, there are two parts to this definition. We let T ,S, f ∈ FFT, with

T = (T,≺T), S = (S,≺S), and f : T → S. Additionally, let ATN and ASN represent the nested

equivalence structures built from trees T and S and set N as in Theorem 4.24. As built, ATN and

ASN are clearly objects in NEquiv. We define F as follows.

• Objects: F (T) = ATN = (N, EATN
1 , . . . , E

ATN
n)

• Morphisms: F (f) = g where g : ATN → ASN is defined as follows.

Let T ,S both have height n+1, and let {eT ,0, eT ,1, eT ,2, . . .} and {eS,0, eS,1, eS,2, . . .} represent

our T -computable and S-computable enumerations of end nodes of T and S respectively as in

Lemma 4.8. Note that by the first part of our functor definition, F (T) = ATN = (N, EATN
1 , . . . , E

ATN
n)

and similarly F (S) = ASN = (N, EASN
1 , . . . , E

ASN
n). Therefore g should be an isomorphism between

119

the two structures, ATN and ASN . We can now define g : N → N as follows.

g(j) = k
defn
⇐⇒ f(eT ,j) = eS,k (5.1)

This definition may seem a little odd. After all, we are relying only upon end-nodes of T and S to

define an isomorphism from ATN to ASN . If we recall the construction of ATN , however, the first step

involved placing all elements of our given set (in this case, N) onto the terminating level of a tree

with nodes that looked like equivalence classes. Indeed, Corollary 4.16 confirmed that each element

of our set (again, in this case N) was represented on the terminating level of this tree. We also note

that since f is itself an isomorphism, we are guaranteed that all the “middle” levels of the trees T

and S line up with each other under ≺T and ≺S appropriately. Hence so, too, will all the “middle”

levels of TN and SN align, and subsequently all equivalence classes of ATN and ASN once we finish

their construction. Though this is not necessarily intuitively clear, we will now confirm that g as

defined is indeed an isomorphism.

Lemma 5.3. The function g = F (f) as defined in Equation 5.1 is an isomorphism.

Proof. Let T ,S be full, finite height trees of height n + 1 ≥ 2, and let ATN = (N, EATN
1 , . . . , E

ATN
n)

and ASN = (N, EASN
1 , . . . , E

ASN
n) be nested equivalence structures built from them and the set N

as in Theorem 4.24. To prove that g : ATN → ASN is an isomorphism, we need to prove that it

is 1-1, onto, and preserves equivalence relations. Let {eT ,0, eT ,1, eT ,2, . . .} and {eS,0, eS,1, eS,2, . . .}

represent our T -computable and S-computable enumerations of end nodes of T and S respectively

as in Lemma 4.8.

We begin by showing g is 1-1. Let j, � ∈ N such that g(j) = g(�). Then,

g(j) = k = g(�) ⇐⇒ f(eT ,j) = eS,k = f(eT ,�) (by Equation 5.1)

=⇒ eT ,j = eT ,� (since f an isomorphism, ∴ 1-1)

Therefore the jth terminating node in our enumeration of terminating nodes of T is the same as

the �th terminating node in our enumeration of terminating nodes of T . But our enumeration of

end nodes lists each end node exactly once, without repetition. Therefore, we must have that j = �,

and hence g(j) = g(�) =⇒ j = � as desired.

To show that g is onto, we let k ∈ N. Since we are considering trees, S and T , with countably

infinite domains, we know that there are infinitely many nodes at the terminating level of each tree.

Therefore our enumeration of end nodes of S is indeed an infinite set, and hence there is some kth

120

element in its enumeration, call it eS,k. Since f is an isomorphism, and hence 1-1 and onto, there

is some corresponding element in T such that applying f yields eS,k. Additionally, since f is an

ismorphism, and hence preserves order, this element of T must itself be an end node of T since eS,k

is an end node of S. In other words, there is some j ∈ N such that eT ,j is a terminating node of

T and f(eT ,j) = eS,k. Therefore, by how we defined g in Equation 5.1, g(j) = k, and there is an

element of N, namely j ∈ N, such that g(j) = k. Therefore g is onto.

Now, to show that g preserves equivalence relations we need to show that given j, � ∈ N, for each

i ∈ {1, . . . , n},

jE
ATN
i � ⇐⇒ g(j)E

ASN
i g(�)

To show this, we think back to the construction of ATN and ASN in Theorem 4.10 and Theorem 4.17.

We follow elements of ATN back through the construction to T , then apply the isomorphism f , and

follow them again back the other way through the construction from S to ASN . The following does

just this.

jE
ATN
i � ⇐⇒ (by Equation 4.6) ∃ node x at level i of TN such that:

x ≺TN [j]
E

ATN
n+1

and x ≺TN [�]
E

ATN
n+1

⇐⇒ (by Equation 4.5) ∃ node (hT
N)

-1(x) at level i of T such that:

(hT
N)

-1(x) ≺T (hT
N)

-1([j]
E

ATN
n+1

) and (hT
N)

-1(x) ≺TN (hT
N)

-1([�]
E

ATN
n+1

)

⇐⇒ (by Lemma 4.11) ∃ node y at level i of T such that:

y ≺T eT ,j and y ≺T eT ,�

⇐⇒ (b/c f an isomorphism) ∃ node f(y) at level i of S such that:

f(y) ≺S f(eT ,j) and f(y) ≺S f(eT ,�)

⇐⇒ ∃ node f(y) at level i of S such that:

f(y) ≺S eS,k and f(y) ≺S eS,m for some k,m ∈ N

121

Note in the prior step, because f is an isomorphism and eT ,j , eT ,� are terminating nodes of T , this

necessarily means that f(eT ,j) and f(eT ,�) are terminating nodes of S. Therefore the nodes f(eT ,j)

and f(eT ,�) appear somewhere in the enumeration of all terminating nodes of S, call it at the kth

and mth place respectively. That is, f(eT ,j) = eS,k and f(eT ,�)eS,m. Note that it is not necessarily

true that j < � =⇒ k < m (or vice versa), but this fact is not needed. Continuing on we have,

⇐⇒ (by Equation 4.4) ∃ node h
S
N(f(y)) at level i of SN such that:

h
S
N(f(y)) ≺SN h

S
N(eS,k) and h

S
N(f(y)) ≺SN h

S
N(eS,m)

⇐⇒ (by Lemma 4.11) ∃ node z = h
S
N(f(y)) at level i of SN such that:

z ≺SN [k]
E

ASN
n+1

and z ≺SN [m]
E

ASN
n+1

⇐⇒ (by Equation 4.6)

kE
ASN
i m

⇐⇒
�
applying our definition of g to: f(eT ,j) = eS,k ∧ f(eT ,�)eS,m

�

g(j)E
ASN
i g(�)

Combining this all together yields jE
ATN
i � ⇐⇒ g(j)E

ASN
i g(�). Hence g preserves equivalence

relations.

Therefore we have shown that g : ATN → ASN is 1-1, onto, and preserves equivalence relations.

Therefore g is an isomorphism on nested equivalence structures.

Since g is indeed an isomorphism between objects of NEquiv, we can say with certainty that

g ∈ NEquiv. Therefore, we have that F (f : T → S) = g : ATN → ASN = F (f) : F (T) → F (S).

Now, although F : FFT → NEquiv, appears to correctly define a functor which takes objects to

objects and morphisms to morphisms, we still need to check that a few properties are satisfied before

we can confirm that F does indeed define a functor. Namely, we need to check that identity and

composition are both preserved. We do that now.

Lemma 5.4. F preserves identity.

Proof. We let Id represent the identity function. As discussed in Section 5.1, the identity function

serves as the unity morphism for both FFT and NEquiv. Let T ∈ FFT, IdT : T → T . Then

F (IdT) = g where g : F (T) → F (T) and following Equation 5.1, g is defined as follows for j, k ∈ N,

g(j) = k
defn
⇐⇒ IdT (eT ,j) = eT ,k

122

We know that IdT (eT ,j) = eT ,j . Therefore for j ∈ N, g(j) = j, and hence g is also the identity

function. Therefore F (IdT) = g = IdF (T) = IdATN .

Lemma 5.5. F preserves composition of morphisms.

Proof. Let T ,S,U , f1, f2 ∈ FFT such that f1 : T → S and f2 : S → U . Additionally, let

{eT ,0, eT ,1, eT ,2, . . .}, {eS,0, eS,1, eS,2, . . .}, and {eU,0, eU,1, eU,2, . . .} represent our T -computable,

S-computable, and U -computable enumerations of end nodes of T , S, and U respectively as in

Lemma 4.8. Furthermore, assume that for some j, k, � ∈ N:

f1(eT ,j) = eS,k

f2(eS,k) = eU,�

Therefore (f2 ◦ f1)(eT ,j) = eU,�. Now, we know that F (T) = ATN , F (S) = ASN , and F (U) = AUN ,

so we have that,

F (f1) = g1 : ATN → ASN

F (f2) = g2 : ASN → AUN

Now, to check that composition is preserved, we examine F (f1) and F (f2) individually first, and

then their composition. We have the following.

F (f1)(j) = g1(j) = k and F (f2)(k) = g2(k) = �

=⇒ F (f2 ◦ f1)(j) = (g2 ◦ g1)(j) = �

Therefore, F (f2 ◦ f1) = (g2 ◦ g1) = F (f2) ◦ F (f1), which completes our proof.

Therefore, we have that as defined, F does indeed yield a functor from FFT to NEquiv.

Theorem 5.6. Let F : FFT → NEquiv be defined such that F (T) = ATN and F (f) = g where

g(j) = k
defn
⇐⇒ f(eT ,j) = eS,k. Then F is a functor.

Proof. The proof is contained in the prior lemmas: Lemma 5.3, Lemma 5.4, and Lemma 5.5.

Now that we have built the functor F , we wish to examine some of its various properties. We

show now that this functor behaves quite nicely. It is full, faithful, and “essentially onto”. First, we

123

recall some terminology from category theory. Let T ,S ∈ FFT. Then FT ,S denotes the following

map.

FT ,S : {f | f ∈ FFT ∧ f : T → S} −−−→ {g | g ∈ NEquiv ∧ g : F (T) → F (S)}

We begin first by showing that F is full, that is that the map FT ,S is onto. Note that we are now

using the term “full” in two ways from this point on. We recall that a full tree is one in which all of

its paths are exactly the same length. A full functor is one in which the map FT ,S is onto. Though

these are very different definitions for the same word, these definitions actually refer to different

entities entirely — either trees or functors. The meaning of “full” should therefore be clear from the

context.

We introduce here notation for the ith-level predecessor of a node on some tree. Let p(T , x, i) =

the ith level predecessor of node x on tree T . Note that for T ∈ FFT, p(·, ·, ·) is a T -computable

function, as in Corollary 4.6 and Corollary 4.4.

Theorem 5.7. The functor F : FFT → NEquiv is full.

Proof. Let T ,S ∈ FFT, both of height n+ 1 for some n ≥ 1, and let g be some isomorphism from

F (T) = ATN to F (S) = ASN . To show that FT ,S is onto, we need to show that there exists some

morphism f ∈ FFT such that f : T → S and F (f) = g. Since morphisms in FFT are simply

ismorphisms between trees, we need to define an isomorphism, f : T → S.

Instead of doing just this, let’s first define an isomorphism, f̃ : TN → SN. Recall that in

Theorem 4.10 and especially Lemma 4.11 we defined hT
N : T → TN to be an isomorphism. Therefore,

(hS
N)

-1 : SN → S is also an isomorphism. As we can see from Figure 5.2, then, once we define f̃ , we

can then define f as follows:

f
defn
= (hS

N)
-1
◦ f̃ ◦ h

T
N

To show f is indeed an isomorphism, then, all we will need to show is that f̃ is an isomorphism.

Then we would have that f is 1-1 and onto since hS
N , f̃ , and hT

N are. We would also have that f

124

preserves order since hS
N , f̃ , and hT

N do:

x ≺T y ⇐⇒ h
T
N (x) ≺TN h

T
N (y) (b/c h

T
N an isomorphism)

⇐⇒ f̃
�
h
T
N (x)

�
≺SN f̃

�
h
T
N (y)

�
(b/c f̃ an isomorphism)

⇐⇒ (hS
N)

-1
�
f̃
�
h
T
N (x)

��
≺S (hS

N)
-1
�
f̃
�
h
T
N (y)

��
(b/c (hS

N)
-1 an isomorphism)

⇐⇒
�
(hS

N)
-1
◦ f̃ ◦ h

T
N
�
(x) ≺S

�
(hS

N)
-1
◦ f̃ ◦ h

T
N
�
(y)

⇐⇒ f(x) ≺S f(y)

· · ·

T

S

· · ·

· · ·

TN

SN

· · ·

hT
N

(hS
N)

-1

f f̃

Figure 5.2: Construction of f from f̃ and hN in proof of Theorem 5.7, that the functor F : FFT →

NEquiv is full.

So, we proceed here and define f̃ : TN → SN and show it is an isomorphism. First, we recall

that nodes of TN are of the form [j]
E

ATN
i

for some j ∈ N and some i ∈ {0, . . . , n + 1}. Also, since

g : N → N is an ismorphism, we know g(j) ∈ N for any j ∈ N (and certainly for those j’s which

define a node of TN). Therefore, recalling that each element of the domain of SN is represented on

the (n + 1)-th level of SN (see Corollary 4.16), we know that [g(j)]
E

ASN
n+1

∈ SN. Therefore, for each

[j]
E

ATN
i

∈ TN we can now define f̃ :

f̃([j]
E

ATN
i

)
defn
= p(SN, [g(j)]

E
ASN
n+1

, i) (5.2)

125

We recall that the node p(SN, [g(j)]
E

ASN
n+1

, i) is defined to be the ith level predecessor on SN of

[g(j)]
E

ASN
n+1

. Note that we do allow i = n + 1, and therefore we are considering predecessors under

�SN .

We now show that f̃ is 1-1. Let [j]
E

ATN
i

, [k]
E

ATN
�

∈ TN such that f̃([j]
E

ATN
i

) = f̃([k]
E

ATN
�

). Then,

f̃([j]
E

ATN
i

) = f̃([k]
E

ATN
�

) =⇒ p(SN, [g(j)]
E

ASN
n+1

, i) = p(SN, [g(k)]
E

ASN
n+1

, �)

Note that nodes of SN are labelled uniquely. (No two nodes have the same labelling.) So the only

way this can happen is if i = �.

=⇒ p(SN, [g(j)]
E

ASN
n+1

, i) = p(SN, [g(k)]
E

ASN
n+1

, �)

= [a]
E

ASN
i

for some a ∈ N and i = �

Since a ∈ N and g an isomorphism on N, we also know that a = g(b) for some b ∈ N.

=⇒ a = g(b)E
ASN
i g(j)E

ASN
i g(k)E

ASN
i

�
by Equation 4.6, since ∃ node x = [a]

E
ASN
i

s.t.

x �SN [g(j)]
E

ASN
n+1

, [g(k)]
E

ASN
n+1

�

=⇒ bE
ATN
i jE

ATN
i k (since g an isomorphism)

=⇒ [b]
E

ATN
i

= [j]
E

ATN
i

= [k]
E

ATN
�

as equiv. classes

Note that these three equivalence classes are all equal in ATN , but this does not mean that they

are necessarily all nodes of TN (though they are all represented as part of some node in TN). But in

fact, we assumed that both [j]
E

ATN
i

, [k]
E

ATN
�

are indeed nodes of TN. The only way this can happen

is if they are identical.

=⇒ j = k and i = �

Therefore [j]
E

ATN
i

= [k]
E

ATN
�

, and we have completed the proof that f̃ is 1-1.

Now we prove that f̃ is onto. We let [a]
E

ASN
i

be a node in SN. This means a ∈ N, and because g

is an isomorphism, we know there is a unique b ∈ N such that g(b) = a. Also, by Corollary 4.16 we

126

know that [a]
E

ASN
n+1

∈ SN, [g(b)]
E

ASN
n+1

∈ SN and levelSN([a]E
ASN
i

) = i. Therefore,

[a]
E

ASN
n+1

= p(SN, [g(b)]
E

ASN
n+1

, i)

Now consider [b]
E

ATN
i

as an equivalence class. Note, we have no guarantee that [b]
E

ATN
i

is a node

in TN, only that it is represented by some node in TN. So, let c be the smallest element in this

equivalence class. Then bE
ATN
i c, and [c]

E
ATN
i

∈ TN. Now, let g(c) = d for some d ∈ N. Then,

because g is an isomorphism and preserves equivalence classes,

bE
ATN
i c =⇒ g(b)E

ASN
i g(c) =⇒ aE

ASN
i d

Therefore, d ∈ [a]
E

ASN
i

, and hence [a]
E

ASN
i

is the ith level predecessor in SN of [d]
E

ASN
n+1

. That is,

[a]
E

ASN
i

= p(SN, [g(c)]
E

ASN
n+1

, i) = f̃([c]
E

ATN
i

)

So, given some node [a]
E

ASN
i

in SN, we have found a node in TN such that applying f̃ to it gives us

back [a]
E

ASN
i

. Namely, this is node [c]
E

ATN
i

in TN, where c is the smallest natural number such that

cE
ATN
i g-1(a). Therefore f̃ is onto.

Now, we show that f̃ preserves order. Let [a]
E

ATN
i

, [b]
E

ATN
j

∈ TN. Then,

[a]
E

ATN
i

≺TN [b]
E

ATN
j

=⇒ bE
ATN
i a and i < j

=⇒ g(b)E
ASN
i g(a)

=⇒ ∃x at level i s.t. x ≺TN [g(b)]
E

ASN
n+1

and x ≺TN [g(a)]
E

ASN
n+1

Specifically, this tells us that x is the ith level predecessor of [g(b)]
E

ASN
n+1

and [g(a)]
E

ASN
n+1

in ASN . In

other words,

x = p(SN, [g(b)]
E

ASN
n+1

, i) = p(SN, [g(a)]
E

ASN
n+1

, i) = f̃([g(a)]
E

ASN
n+1

)

Now, let y be the jth level predecessor of [g(b)]
E

ASN
n+1

. Since i < j and both x and y are predecessors

of [g(b)]
E

ASN
n+1

, this implies that x ≺SN y. This gives us:

f̃([g(a)]
E

ASN
n+1

) = x ≺SN y = p(SN, [g(b)]
E

ASN
n+1

, j) = f̃([g(b)]
E

ASN
n+1

)

Therefore [a]
E

ATN
i

≺TN [b]
E

ATN
j

=⇒ f̃([g(a)]
E

ASN
n+1

) ≺SN f̃([g(b)]
E

ASN
n+1

). Now, to show the other

127

direction we have:

f̃([g(a)]
E

ASN
n+1

) ≺SN f̃([g(b)]
E

ASN
n+1

) =⇒ ith level predecessor of [g(a)]
E

ASN
n+1

“ ≺SN ”

jth level predecessor of [g(b)]
E

ASN
n+1

=⇒ p(SN, [g(a)]
E

ASN
n+1

, i) ≺SN p(SN, [g(b)]
E

ASN
n+1

, j)

Since clearly [g(a)]
E

ASN
n+1

is a successor of its ith level predecessor, and same for [g(b)]
E

ASN
n+1

and its

jth level predecessor. Therefore we have:

p(SN, [g(a)]
E

ASN
n+1

, i) ≺SN [g(a)]
E

ASN
n+1

, and,

p(SN, [g(a)]
E

ASN
n+1

, i) ≺SN p(SN, [g(b)]
E

ASN
n+1

, j) ≺SN [g(a)]
E

ASN
n+1

This gives that there is a node z at level i, namely node z = p(SN, [g(a)]
E

ASN
n+1

, i), such that

z ≺SN [g(b)]
E

ASN
n+1

and z ≺SN [g(a)]
E

ASN
n+1

Therefore, applying Equation 4.6 yields that g(b)E
ASN
i g(a). Since g is an isomorphism, and hence

preserves equivalence relations, we know then that bE
ATN
i a. Now, considering the below as equiva-

lence classes (not necessarily nodes on TN), and recalling that equivalence classes are nested in ATN ,

we have:

bE
ATN
i a =⇒ b ∈ [a]

E
ATN
i

= [b]
E

ATN
i

⊇ [b]
E

ATN
j

=⇒ [a]
E

ATN
i

⊇ [b]
E

ATN
j

We already know that [a]
E

ATN
i

are indeed nodes [b]
E

ATN
j

in TN (we assumed as much at the beginning

of this part of the proof). We also already showed that i < j. Therefore applying Equation 4.7 we

get that:

[a]
E

ATN
i

≺TN [b]
E

ATN
j

Hence we have now shown that f̃([a]
E

ATN
i

) ≺SN f̃([b]
E

ATN
j

) =⇒ [a]
E

ATN
i

≺TN [b]
E

ATN
j

. Therefore, we

have now completed both directions to show that f̃ preserves order.

Since we now showed that f̃ is 1-1, onto, and preservers order, we have completed the proof that f̃

128

is an isomorphism. Hence building f as previously described will yield the appropriate isomorphism

f : T → S.

There is only one final part of the proof, and that is to show that as built, F (f) = g. So, let

g(j) = k. We need to show that F (f)(j) = k. By the definition in Equation 5.1, F (f)(j) = k
defn
⇐⇒

f(eT,j) = eS,k. So, we now apply f to eT,j :

f(eT ,j) = ((hS
N)

-1
◦ f̃ ◦ h

T
N)(eT ,j)

= ((hS
N)

-1
◦ f̃)

�
h
T
N (eT ,j)

�

= ((hS
N)

-1
◦ f̃)([j]

E
ATN
n+1

)

= (hS
N)

-1
�
f̃([j]

E
ATN
n+1

)
�

= (hS
N)

-1
�
p(SN, [g(j)]

E
ASN
n+1

, n+ 1)
�

= (hS
N)

-1
�
p(SN, [k]

E
ASN
n+1

, n+ 1)
�

(recall g(j) = k by assumption)

= (hS
N)

-1([k]
E

ASN
n+1

)

= eSN,k

Therefore F (f)(j) = k, and hence F (f) = g as intended. This completes the proof.

Now that we have proven that the functor F is full, we have a method to go from any isomorphism

between nested equivalence structures F (T) and F (S), to an isomorphism between T and S. For

instance, we now have the following very useful corollary.

Corollary 5.8. Let T ,S be trees in FFT, with functor F : FFT → NEquiv. Then,

T � S ⇐⇒ F (T) � F (S)

Proof. Let T ,S ∈ FFT. First, if T � S, this means there exists some isomorphism f ∈ FFT

such that f : T → S. Since F is a functor, and specifically as shown in Lemma 5.3, we know

then that F (f) = g is an isomorphism from F (T) to F (S). Therefore F (T) � F (S). Conversely,

if F (T) � F (S), then there must be some isomorphism, g : F (T) → F (S). Because, as shown in

Theorem 5.7, F is full, or in other words FT ,S is onto, we know then that there is some isomorphism

f : T → S such that F (f) = g. The existence of this isomorphism guarantees then that T � S.

129

We now continue on and show that our functor F : FFT → NEquiv is faithful, that is that the

map FT ,S is 1-1.

Theorem 5.9. The functor F : FFT → NEquiv is faithful.

Proof. Let T ,S ∈ FFT, both of height n + 1 for some n ≥ 1. Furthermore, let f1, f2 ∈ FFT such

that F (f1) = F (f2) = g for some isomorphism g ∈ NEquiv, and let t be some node at level i of T

for some i ∈ {0, . . . , n + 1}. To show f1 = f2 we will show that f1(t) = f2(t) for any input t ∈ T .

Since both f1 and f2 are isomorphisms onto S and t is at level i of T , then f1(t) and f2(t) are

both nodes at level i of S. Let eS,k1 be the least end node in S that is a successor of f1(t), and let

eS,k2 be the least end node in S that is a successor of f2(t). Since we may have that i = n+ 1, the

terminating level of the tree, we consider successors under �S .

Since f1 and f2 are isomorphisms, this means there exist end nodes in T , which are themselves

successors of t, such that when we apply f1 and f2 we get eS,k1 and eS,k2 respectively. That is, there

exist j1, j2 ∈ N such that:

f1(eT,j1) = eS,k1 and f1(eT,j2) = eS,k2

Note that k1 < k2 does not necessarily imply that j1 < j2, or vice versa, but we do not need this

fact in our proof. Applying our definition of F on morphisms from Equation 5.1,

F (f1) = k1 and F (f2) = k2

We recall that by assumption, F (f1) = F (f2) = g. Therefore we are talking about the same function,

g, in both cases. Hence g(j1) = k1 and g(j2) = k2. By the way we’ve defined ATN and ASN as in

Theorem 4.24, this means that:

1. Nodes eT,j1 , eT,j2 must be successors of t in T , because their images under isomorphisms f1

and f2, respectively, are successors of f(t) in S.

2. Since t is at level i, when we apply hT
N to generate TN, there will be some node in TN corre-

sponding to t, call it hT
N (t), which has [j1]

E
ATN
n+1

and [j1]
E

ATN
n+1

as successors.

3. Once we apply h̃, then, to get our nested equivalence structure ATN , this yields that j1, j2 are

in the same E
ATN
i -th equivalence class. (Applying Equation 4.6 which defines the equivalence

relation E
ATN
i .)

130

4. Now, when we apply g, an isomorphism, this means that k1, k2 are the images of j1, j2 respec-

tively and therefore must be in the same E
ASN
i equivalence class.

So, taking k1E
ASN
i k2 and again applying Equation 4.6 which now we can view as defining the

equivalence relation E
ASN
i , this means there exists a node x at level i of SN such that x ≺SN [k1]

E
ASN
i

and x ≺SN [k2]
E

ASN
i

. Now we note that hS
N(f1(t)) is:

• at level i of SN, because t is at level i of T , and f1, h
S
N are both ismorphisms; and,

• a predecessor of [k1]
E

ASN
n+1

in SN, by how we defined ≺SN with regards to hS
N in Equation 4.4,

since eS,k1 is an end node in S which is a successor of f1(t). (That is, we know hS
N
�
f1(t)

�
�SN

[k1]
E

ASN
n+1

since f1(t) �SN eS,k1 .)

Therefore, x = hS
N(f1(t)), since a node can have only one predecessor at each level. Similarly, we

have that hS
N(f2(t)) is:

• at level i of SN, because t is at level i of T , and f2, h
S
N are both ismorphisms; and,

• a predecessor of [k2]
E

ASN
n+1

in SN, by how we defined ≺SN with regards to hS
N in Equation 4.4.

(That is, we know hS
N
�
f2(t)

�
�SN [k2]

E
ASN
n+1

since f2(t) �SN eS,k2 .)

Therefore, x = hS
N(f2(t)), since again, a node can have only one predecessor at each level. Together,

this means that hS
N(f1(t)) = hS

N(f2(t)). Recall, we already showed in Lemma 4.12 that hS
N is 1-

1. Therefore f1(t) = f2(t). Since we chose t to be some arbitrary node in T , this means that

f1(t) = f2(t) for any t ∈ T . Therefore f1 = f2, completing the proof. Hence FT ,S is indeed 1-1.

Finally, we can show that the functor F : FFT → NEquiv is “essentially onto”. Recalling

this definition, we show that for every finitely-nested equivalence structure A ∈ NEquiv, there is a

corresponding full, finite height tree T ∈ FFT such that when we apply the functor F to it, we get

a structure F (T) isomorphic to our original structure A. It is this final key property of the functor

that, together paired with the fact that we can do this all computably (we will show the algorithmic

part of this in Section 5.3), allows us to transfer results from trees of finite height to finitely nested

equivalence structures.

At a high-level, the fact that F is essentially onto is easy to see intuitively. We take a nested

equivalence structure, A, and draw a tree from it; we could even follow the intuitive method as

described in Section 4.3. Then we relabel the nodes in some algorithmic manner so that they’re in

N; for instance, we could wind our way through the branches to ensure that all the infinitely many

nodes get labelled. This new object that we have created will clearly be a tree. Furthermore, we

131

have in some sense coded the nesting of A into the branching of this tree. Therefore, when we apply

F back to it, we maintain the branching and hence maintain the nesting, i.e. we get the same type

of nesting back that we started with. Therefore, this new nested equivalence structure is isomorphic

to the original one, even if the labels of the elements are not identical. We now proceed with the

formal proof of this fact.

Theorem 5.10. The functor F : FFT → NEquiv is essentially onto.

Proof. Let A = (A,E1, . . . , En) be an n-nested equivalence structure in NEquiv. Let TAN be the

tree built from A as in Theorem 4.41. We already proved in Corollary 4.37 that TAN is a full finite

height tree, with height ≥ 2 for n ≥ 1 and infinitely many nodes. Therefore TAN ∈ FFT. To show

that F is essentially onto, we will show then that F (TAN) is isomorphic to A. To do this, we will

explicitly build an isomorphism: g : A → F (TAN). Figure 5.3 gives an overview of just how we

will go about this using the tree TA, as built in Theorem 4.27, and the tree (TAN)N, as built in

Theorem 4.10. Recall that as we’ve defined the functor F , F (TAN) = A(TAN)N
.

· · ·

TAN

· · ·

TA

· · ·

(TAN)N

ĥ
TA
N

h
TAN
N

A�
A,E1, . . . , En

�

A(TAN)N = F (TAN)
�
N, E

A(TAN)N
1 , . . . , E

A(TAN)N
n

�

ˆ̃
h

h̃

g

Figure 5.3: Diagram showing steps involved in proof of Theorem 5.10, that the functor F : FFT →

NEquiv is essentially onto.

So, let a ∈ A. Define the isomorphism g as follows.

g(a) = k
defn
⇐⇒ (h

TAN
N ◦ ĥ

TA
N)([a]EA

n+1
) = [k]

E
A(TAN)N
n+1

(5.3)

Now, to see that g is 1-1 we let a, b ∈ A such that g(a) = g(b) = k for some k ∈ N. This implies the

132

following,

(h
TAN
N ◦ ĥ

TA
N)([a]EA

n+1
) = (h

TAN
N ◦ ĥ

TA
N)([b]EA

n+1
) = [k]

E
A(TAN)N
n+1

We know from Lemma 4.13 and Lemma 4.36 that h
TAN
N and ĥ

TA
N are both isomorphisms. Therefore

their composition is 1-1, and hence [a]EA
n+1

= [b]EA
n+1

, when considered as nodes on the tree TA.

These two nodes can be equal, however, only when a = b. Therefore g(a) = g(b) =⇒ a = b, and

hence g is 1-1.

Now we prove that g is onto. Let k ∈ N. We need to show there is some element a ∈ A such that

g(a) = k. Based on the definition of g given in Equation 5.3, we examine the node [k]
E

A(TAN)N
n+1

on

tree (TAN)N. We know that this is a node on the tree by Corollary 4.16. Furthermore, since h
TAN
N and

ĥ
TA
N are isomorphisms, they are onto, and hence their composition is onto. Therefore there exists

some node on tree TA such that:

(h
TAN
N ◦ ĥ

TA
N)([a]EA

n+1
) = [k]

E
A(TAN)N
n+1

Furthermore, we know that if [a]EA
n+1

is a node on TA, this means that a must be an element of the

universe, A, of our nested equivalence structure, A. Therefore given some k ∈ N, we know there

exists a ∈ A such that g(a) = k, and g is onto.

Finally, we prove that g preserves equivalence relations. Let a, b ∈ A such that g(a) = k and

g(b) = j, and let i ∈ {0, . . . , n+ 1}. Then,

aE
A
i b ⇐⇒ ∃ node x at level i of TA s.t. x ≺TA [a]EA

n+1
and x ≺TA [b]EA

n+1

(by definition in Equation 4.6)

⇐⇒ ∃ node y = (h
TAN
N ◦ ĥ

TA
N)(x) at level i of TA s.t.

y ≺(TAN)N
(h

TAN
N ◦ ĥ

TA
N)([a]EA

n+1
) and y ≺(TAN)N

(h
TAN
N ◦ ĥ

TA
N)([b]EA

n+1
)

(because h
TAN
N , ĥ

TA
N are isomorphisms)

⇐⇒ ∃ node y at level i of TANN s.t.

y ≺(TAN)N
[k]

E
A(TAN)N
n+1

and y ≺(TAN)N
[j]

E
A(TAN)N
n+1

�
because g(a) = k and g(b) = j

�

⇐⇒ g(a) = kE
A(TAN)N
i j = g(b)

(by definition in Equation 4.6)

133

Therefore, g preserves equivalence relations, completing the proof that g is indeed an isomorphism.

This gives that for any A ∈ NEquiv, there exists a tree in FFT (namely the tree TAN) such that

F (TAN) � A. Therefore the functor F is essentially onto.

Having shown that our functor F : FFT → NEquiv is essentially onto, we can now examine

under what conditions two nested equivalence structures are isomorphic. The following very nice

corollary is immediate. In some sense it is parallel to Corollary 5.8.

Corollary 5.11. Let A,B be nested equivalence structures in NEquiv, and let TAN , TBN be as built

in Theorem 4.41. Then,

A � B ⇐⇒ TAN � TBN

Proof. LetA,B ∈ NEquiv, and let TAN , TBN be as built in Theorem 4.41. As proved in Theorem 5.10,

F (TAN) � A and similarly F (TBN) � B. By Corollary 5.8 we also have that TAN � TBN ⇐⇒

F (TAN) � F (TBN). Therefore,

A � B =⇒ F (TAN) � A � B � F (TBN) =⇒ TAN � TBN

TAN � TBN =⇒ A � F (TAN) � F (TBN) � B =⇒ A � B

We have now shown that our functor F : FFT → NEquiv exhibits several nice properties. It

is full, faithful, and essentially onto. Turning again to the language of category theory, we can now

state that this functor constitutes an equivalence of the categories FFT and NEquiv. We now have

enough information to transfer over category-theoretic properties from FFT to NEquiv and vice

versa. While this in and of itself is quite interesting, we are focused here on computability-theoretic

notions of FFT and NEquiv. Exploring whether the computability-theoretic properties transfer

from FFT to NEquiv is the subject of the following section.

5.3 Computability of the Functor

In order for us to examine whether the computability-theoretic properties transfer from FFT to

NEquiv and vice versa, we must explore the computability of the functor, F : FFT → NEquiv,

and the computability of its various properties. We recall that in all of the work we did in Chapter 4,

134

we proved that the various maps used along the way were indeed computable, or rather that they

were computable relative to our given tree, set, and/or nested equivalence structure. These facts

will be very useful here.

Formally, F is said to be a computable functor if for T ,S, f ∈ FFT and f : T → S, we have

that F (T) is uniformly computable in T and F (f) is uniformly computable in T ⊕ S ⊕ f . We now

show that this is indeed the case, that the functor F is computable.

Theorem 5.12. F is a computable functor.

Proof. Let T ∈ FFT. We recall that we defined F (T) = ATN , where ATN is the nested equivalence

structure built from tree, T , and set, N, as in Theorem 4.24. We already showed in Lemma 4.21

that ATA is (T ⊕A)-computable for any set A ⊆ N. Furtheremore, the construction in Lemma 4.21

was uniform in T and A; that is, the same procedure works for any T and A. Therefore, since N is

a computable set, ATN is uniformly T -computable, and hence F (T) is uniformly T -computable, as

desired.

Now, let T ,S, f ∈ FFT and f : T → S. Recall we defined F (f) = g, where g was defined as in

Equation 5.1 and depended upon enumerations of the end nodes of T and S. So, to show that F (f)

is (T ⊕ S ⊕ f)-computable, we need to describe a process which, given j ∈ N will compute g(j),

using only oracles for T , S, and f .

1. Using a T -oracle (as in Lemma 4.8), enumerate end nodes of T until the jth end node, eT,j ,

has been enumerated.

2. Using an f -oracle, now compute f(eT,j).

3. Similarly, using Lemma 4.8 and an S-oracle, enumerate end nodes of S until we have found

f(eT,j). That is, enumerate each end node in order and ask: eS,0 = f(eT,j)? eS,1 = f(eT,j)?

eS,2 = f(eT,j)? . . . until we have found k such that eS,k = f(eT,j). Note that since eT,j is an

end node of T and f is an isomorphism, we are guaranteed that f(eT,j) is an end node of S,

therefore this process will eventually halt.

4. Finally, once we have found this k, output F (f)(j) = g(j) = k.

Therefore F (f) is a (T ⊕ S ⊕ f)-computable isomorphism from F (T) to F (S), or in other words

F (f) ≤T T ⊕ S ⊕ f . Furthermore, the process described was uniform in T ⊕ S ⊕ f ; that is, the

same procedure works for any T , S, and f . Therefore F (f) is uniformly (T ⊕ S ⊕ f)-computable,

and therefore the functor F is computable.

135

We now further examine the computability properties of the isomorphism F (f). We show that

having F (f) is enough to compute the isomorphism f .

Corollary 5.13. Given our functor F : FFT → NEquiv and isomorphism f : T → S, we also

have the following:

f ≤T T ⊕ S ⊕ F (f)

Proof. Let g = F (f). To prove this we need to show that given some t ∈ T and given oracles for T ,

S, and g we can determine f(t). Below is such a process.

1. First, using a T -oracle, determine levelT (t), as in Corollary 4.4. Say levelT (T) = i.

2. Then, find the smallest end node successor of t. That is, using a T -oracle enumerate end

nodes, eT,j , of T one at a time as in Lemma 4.8. After we have enumerated each one, ask

(using our T -oracle): t �T eT,0? t �T eT,1? t �T eT,2? . . . Continue on until we have found

the smallest such end node, say t �T eT,�. (Since t is on our full tree, we are guaranteed to

have at least one such end node successor of t.)

3. Now, apply F (f) as appropriate to this end node. Since F (f) is actually a function on N,

what we mean by this is: using a g oracle, calculate g(�). Say then that g(�) = k.

4. Using an S-oracle, start enumerating end nodes of S as in Lemma 4.8 until we have found the

kth one, eS,k.

5. Find p(S, eS,k, i) = the ith level predecessor of eS,k. Note that this is possible using an S-oracle

by Corollary 4.6 and Corollary 4.4. Say that p(S, eS,k, i) = s

6. Finally, halt and output f(t) = s.

Therefore, we have used only T , S, and g oracles to calculate f on a given input t. Hence, f is

(T ⊕ S ⊕ F (f))-computable.

Clearly, for T and S both computable and for F (f) = g, then we have that g is f -computable,

and f is g-computable. We can extend these properties in a few more useful ways with the following

two corollaries.

Corollary 5.14. Let T ,S be full finite height trees and let T be computable. Then,

T �deg(S) S ⇐⇒ F (T) �deg(S) F (S)

136

Proof. Let T ,S ∈ FFT such that T is computable. We first assume that T �deg(S) S. This means

there is a deg(S)-computable isomorphism f : T → S. Furthermore, because F is a functor (as

shown in Theorem 5.6) we know that F (f) is itself an isomorphism from F (T) to F (S). Therefore,

applying the results of Theorem 5.12, we have:

deg
�
F (f)

�
≤ deg(T) ∪ deg(S) ∪ deg(f) ≤ 0 ∪ deg(S) ∪ deg(S)

Therefore, deg
�
F (f)

�
≤ deg(S), and hence F (f) is a deg(S)-computable isomorphism from F (T)

to F (S). This gives that F (T) �deg(S) F (S).

Next we assume that F (T) �deg(S) F (S). Therefore there exists some deg(S)-computable isomor-

phism g : F (T) → F (S). Since F is full by Theorem 5.7, this means there exists some corresponding

isomorphism f : T → S such that F (f) = g. Therefore by Corollary 5.13 we have that:

deg(f) ≤ deg(T) ∪ deg(S) ∪ deg
�
F (f)

�
≤ 0 ∪ deg(S) ∪ deg(S)

Therefore deg(f) ≤ deg(S) and f : T → S is an isomorphism computable in deg(S). This gives that

T �deg(S) S.

Corollary 5.15. Let T ,S both be computable full finite height trees and let d be some Turing degree.

Then,

T �d S ⇐⇒ F (T) �d F (S)

Proof. Let T ,S ∈ FFT such that T and S are computable. We first assume that T �d S. This

means there exists an isomorphism f : T → S such that deg(f) ≤ d. Furthermore, since F is a

functor, F (f) is also an isomorphism from F (T) to F (S). Therefore by Theorem 5.6 and the fact

that T and S are both computable:

deg
�
F (f)

�
≤ deg(T) ∪ deg(S) ∪ deg(f) ≤ 0 ∪ 0 ∪ d

Therefore, deg
�
F (f)

�
≤ d and F (f) must be an isomorphism from F (T) to F (S) which is com-

putable in d. Therefore F (T) �d F (S).

Next, we assume that F (T) �d F (S). This means there exists some isomorphism g : F (T) →

F (S) such that g is computable in d. Since F is a full functor, we know there exists some isomorphism

f : T → S such that F (f) = g. Therefore by Corollary 5.13 and the fact that T and S are both

137

computable we have:

deg(f) ≤ deg(T) ∪ deg(S) ∪ deg
�
F (f)

�
≤ 0 ∪ 0 ∪ d

Therefore, deg(f) ≤ d, meaning f is a d-computable isomorphism from T to S, and hence we have

that T �d S.

We now extend the property of F being essentially onto, in order to show that F is “A-essentially

onto”. In other words, we show that for any finitely nested equivalence structure, A ∈ NEquiv,

there is an associated tree in FFT such that when we apply F , we get a nested equivalence structure

which is A-computably isomorphic to A.

Corollary 5.16. Let A be any n-nested equivalence structure, let TAN be a full finite height tree as

built in Theorem 4.41, and let F : FFT → NEquiv be our functor. Then

F (TAN) �deg(A) A

Proof. Note that from Theorem 5.10 we know that for each A ∈ NEquiv there exists some full

finite height tree, namely TAN , such that F (TAN) � A. Furthermore, in the proof of Theorem 5.10

we built an isomorphism, g : A → F (TAN). Therefore, to prove the theorem, all we we need to show

is that g is A-computable. Given some a ∈ A, we now describe a process to compute g(a).

1. First, using our A-oracle, start enumerating CA, the equivalence classes of A without repeti-

tion. Continue listing classes in CA (including equivalence relations EA
0 and EA

n+1) until the

class [a]EA
n+1

is listed. Say it is the jth equivalence class listed in the enumeration CA. That

is [a]EA
n+1

= [cj]EA
ij
.

Note: this implies that ĥTA
N ([a]EA

n+1
) = j.

2. Then, given a (TAN)-oracle (which we can compute from an A-oracle, by Lemma 4.38), start

enumerating end nodes of TAN until we have found j. That is, use Lemma 4.8 to enumerate

end nodes of TAN one at a time and ask e0 = j? e1 = j? e2 = j? . . .? Continue on until we

have found k such that ek = j. Note, we know that j corresponds to an end node because

j = ĥ
TA
N ([a]EA

n+1
), [a]EA

n+1
is an end node of TA, and ĥ

TA
N is an isomorphism. Therefore, this

process will stop and find such a k.

3. Finally, halt and output g(a) = k.

138

The above is an A-computable process to compute the isomorphism g : A → F (TAN). Therefore we

have that F (TAN) �deg(A) A.

We now finish out the remainder of this section by showing that, in the case when their corre-

sponding domains equal to N, finitely nested equivalence structures and their corresponding trees

are indeed Turing equivalent (and vice versa). Let A = (N, E1, . . . , En) be an n-nested equivalence

structure, let T = (N,≺T) be a full tree of finite height n + 1 ≥ 2, and let TAN and ATN be the

corresponding structures built from them as in Theorem 4.41 and Theorem 4.24 respectively.

Theorem 5.17. A ≡T TAN

Proof. We first recall that by Theorem 4.41, TAN is A-computable, therefore TAN ≤T A. Therefore,

to complete the proof we need only show that A ≤T TAN . To show this, we need to show that given

an oracle for TAN and given k, � ∈ N, there is some computable process by which we can determine

whether kEi� for each i ∈ {0, . . . , n+ 1}.

Recall that TAN is not just any tree, but it is a tree that was built from a nested equivalence

structure, and therefore it has several nice properties. For instance, the nodes 0, 1, 2, . . . , n, n+ 1 in

TAN correspond with the nodes [0]E0 , [0]E1 , [0]E2 , . . . , [0]En , [0]En+1 respectively on TA. Below is

such a computable process to determine whether kEi� for each i ∈ {0, . . . , n+ 1}.

1. Given TAN we first use its nodes to enumerate nodes of TA until we have enumerated the kth

and �th end node of TAN and all of their respective predecessors (which will correspond to

nodes [k]En+1 and [�]En+1 on TA and all of their respective predecessors). The process is as

follows:

(a) Using the oracle for TAN , enumerate the 0th end node of TAN . This will correspond to

node [0]En+1 on TA. Then, using a TAN oracle computably find all of its predecessors

and their levels: p0, p1, . . . , pn. (This is possible as in Corollary 4.4 and Corollary 4.6.)

These will correspond to nodes [0]E0 , [0]E1 , [0]E2 , . . . , [0]En respectively on TA.

(b) Using the oracle for TAN , enumerate the first end node of TAN . This will correspond to

node [1]En+1 on TA. Then, using a TAN oracle computably find all of its predecessors and

their levels: p0, p1, . . . , pn. (This is possible as in Corollary 4.4 and Corollary 4.6.) If

any pj ’s are not yet enumerated into TA, we enumerate them as node [1]Ej in TA.

(c) Continue on in this manner until we have enumerated [k]En+1 and [�]En+1 into TA and

their predecessors.

139

(d) That is, move on to the mth end-node of TAN , which will correspond to node [m]En+1 on

TA. Then using a TAN oracle, computably find all of its predecessors and their levels: p0,

p1, . . . , pn (as in Corollary 4.4 and Corollary 4.6). If any pj ’s are not yet enumerated into

TA, enumerate each as node [m]Ej in TA. Continue until we have done this for m = k

and m = �.

2. Now compare the ith level predecessor of [k]En+1 on TA with the ith level predecessor of [�]En+1

on TA. If they’re the same, then kEi�. If they’re not the same then ¬(kEi�).

Therefore, the above process uses a TAN -oracle to computably determine the equivalence relations

in A = (N, E1, . . . , En). Therefore A ≤T TAN . Hence if A has domain N, then A ≡T TAN .

Note that in the above theorem, we needed to know ahead of time that the domain of A was

N. The process would have worked equally as well for any infinite domain A ⊆ N, substituting ak

and a� for k and � in the above proof where A = {a0 < a1 < . . .}. However, we would have needed

to know A ahead of time. For instance, consider nested equivalence structures A = (N, E1, . . . , En)

and B = (N− {0}, R1, . . . , Rn) defined by: aEib ⇐⇒ (a+ 1)Ri(b+ 1). It is easy to see that if we

follow the process given in Theorem 4.41, then TAN and TBN would be identical. Without knowing

ahead of time, then, their respective domains, it is impossible to recover dom(A) and dom(B) from

the associated tree, although we can recover the overall structure of the equivalence relations and

their nesting properties.

We now see that a similar result holds for a given tree, T = (N,≺T) which is full and of finite

height n+ 1 ≥ 2, and its corresponding nested equivalence structure ATN as built in Theorem 4.24.

Theorem 5.18. T ≡T ATN

Proof. We already showed in Lemma 4.21 that ATN is T computable, and hence ATN ≤T T . There-

fore, to complete the proof we need only show that T ≤T ATN . To do this, we must show that given

an oracle for ATN and given j, k ∈ N, there is a computable process to determine whether j ≺T k.

Below is such a process.

1. UsingATN oracle, start enumerating equivalence classes CATN in order until we have enumerated

the jth and kth equivalence classes. Call them [cj]
E

ATN
ij

and [ck]
E

ATN
ik

respectively for some

cj , ck ∈ N and ij , ik ∈ {0, . . . , n+ 1}.

2. Check if ij > ik. If yes, then stop; we know that j �≺T k. If no, then continue on to the next

step.

140

3. Then, using an ATN oracle, ask whether cjE
ATN
ij

ck.

• If yes, this implies that as equivalence classes [cj]
E

ATN
ij

= [ck]
E

ATN
ij

. Hence, [cj]
E

ATN
ij

⊇

[ck]
E

ATN
ik

, and [ck]
E

ATN
ik

≺TN [cj]
E

ATN
ij

. Therefore we know that j ≺T k.

• If no, this implies that cj /∈ [ck]
E

ATN
ij

⊇ [ck]
E

ATN
ik

, hence [ck]
E

ATN
ik

�≺T [cj]
E

ATN
ij

. Therefore

we know that j �≺T k.

Therefore, following the above process and using an oracle for ATN we can computably determine

≺T . Therefore T ≤T ATN . Hence, if T has domain N, then T ≡T ATN .

Now that we have shown that the functor F : FFT → NEquiv and the associated structures ATN

and TAN abide by many nice computability-theoretic properties, in the next chapter we will leverage

the existence of this computable functor to obtain many nice computability-theoretic results.

141

Chapter 6

Computability-Theoretic

Properties of Nested Equivalence

Structures and Full Trees of Finite

Height

Using the framework we have setup in Chapter 4 and Chapter 5, we can now examine many nice

computability-’theoretic results pertaining to nested equivalence structures and certain types of full

finite height trees. We examine previous work conducted on these types of structures and transfer

the results accordingly.

6.1 Trees of Finite Height

Trees of finite height were studied extensively by Lempp, McCoy, Miller, and Solomon in [31].

Although their investigation took into account all trees of finite height, many of the results are

clearly directly applicable to full trees of finite height ≥ 2.

Lempp, McCoy, Miller, and Solomon came up with the following structural criterion to help

classify the computable categoricity of trees of finite height. Let T = (T,≺T) be a tree of finite

height and let x be some node in T . Then we let Sx denote the set of immediate successors of x.

142

That is:

Sx = {y ∈ T : y �T x ∧ ¬∃z(y �T z �T x)} = {xi ∈ T : i ∈ Ix} for some indexing set Ix

(Note that in general, Sx and Ix are not necessarily computable.) We furthermore define the

immediate successor subtree of xi, to be T [xi] = {y ∈ T : xi �T y}. Then x is defined to be a node

of strongly finite type by the following conditions:

• If x is a terminating node of tree T , then x is of strongly finite type.

• If x is not a terminating node, and x meets all of the following conditions, then x is of strongly

finite type.

i. There are only finitely many isomorphism types in the set {T [xi] : i ∈ Ix}, each of which

is of strongly finite type.

ii. For each j, k ∈ I, if T [xj] embeds into T [xk], then either:

– T [xj] and T [xk] are isomorphic; or

– The isomorphism type of T [xk] appears finitely often in the set {T [xi] : i ∈ Ix}.

A tree, T , is said then to be a tree of strongly finite type if every node in T is of strongly finite

type.

Lempp, McCoy, Miller, and Solomon also defined a similar, though slightly weaker condition.

The node x is defined to be a node of finite type as follows:

• If x is a terminating node of tree T , then x is of finite type.

• If x is not a terminating node, and x meets all of the following conditions, then x is of finite

type.

i. There are only finitely many isomorphism types in the set {T [xi] : i ∈ Ix}, each of which

is of finite type.

ii. Every isomorphism type which appears infinitely often in the set {T [xi] : i ∈ Ix} is of

strongly finite type.

iii. For each j, k ∈ I, if T [xj] embeds into T [xk], then either:

– T [xj] and T [xk] are isomorphic; or

– The isomorphism type of T [xj] appears finitely often in the set {T [xi] : i ∈ Ix}; or

143

– The isomorphism type of T [xk] appears finitely often in the set {T [xi] : i ∈ Ix}.

A tree, T , is said then to be a tree of finite type if every node in T is of finite type.

Note that in general it can be difficult to determine whether or not a given node is a terminating

node in the first place. Specifically, even for a computable tree, T , levelT is only a c.e. function. In

our context, however, we are dealing with full finite height trees, and therefore determining the level

of a node x on tree T is a T -computable process, as already shown in Lemma 4.3 and Corollary 4.4.

This means then that for the most part, determining whether a given node or a given tree is of finite

type in the first place will likely be an “easier” process for full trees of finite height than for the

general case of trees of finite height.

Lempp, McCoy, Miller, and Solomon used this structural criterion as a way to fully classify

computable categoricity and relative computable categoricity of full trees of finite height, with the

following theorem.

Theorem 6.1 (Lempp, McCoy, Miller, and Solomon, [31]). Let T be a computable tree of finite

height. Then the following are equivalent:

1. T is a tree of finite type

2. T is computably categorical

3. T is relatively computably categorical

In addition, these researchers were able to fully classify the possible computable dimensions of

full trees of finite height.

Theorem 6.2 (Lempp, McCoy, Miller, and Solomon, [31]). Let T be a computable tree of finite

height. Then the computable dimension of T is equal to 1 or ω.

6.2 Computable Categoricity of Nested Equivalence Struc-

tures

We can now take the results on computable categoricity of trees of finite height and transfer them

to nested equivalence structures. We do this by showing that various properties of computable

categoricity hold for a nested equivalence structure A exactly when they hold for the corresponding

tree of finite height.

144

Lemma 6.3. Let A be an n-nested equivalence structure, and let TAN be its corresponding tree built

as in Theorem 4.41. Then,

A is computably categorical ⇐⇒ TAN is computably categorical

Proof. We begin first by assuming that A is computably categorical. Note that if A is computable,

then TAN is also computable by Lemma 4.38. So, to show that TAN is computably categorical, we let

S be some computable tree isomorphic to TAN . We need to show that S is computably isomorphic

to TAN . Note that in the proof of Theorem 5.10 we showed that F (TAN) � A, and in Corollary 5.8

we showed that F (TAN) � F (S). Therefore,

A � F (TAN) � F (S)

Since A is computably categorical by assumption, this gives us the following:

F (S) �c A �c F (TAN)

Therefore F (S) and F (TAN) are computably isomorphic. (We can simply compose the computable

isomorphism between F (S) and A with the one between A and F (TAN).) Therefore there exists

some computable isomorphism g : F (TAN) → F (S). Since F is full as in Theorem 5.7, there exists

some isomorphism f : TAN → S such that F (f) = g, and furthermore due to Corollary 5.13 we know

that f ≤T TAN ⊕S⊕g. Therefore, since TAN , S, and g are all computable, this means that f is itself

a computable isomorphism between TAN and S. Therefore TAN �c S. Since S was chosen arbitrarily,

this means that TAN is computably categorical. Therefore if A is computably categorical, then TAN

is computably categorical.

Now, we assume that TAN is computably categorical, and we letA be computable. To show thatA

is computably categorical, we also let B be some computable nested equivalence structure isomorphic

to A. We need to show that B is computably isomorphic to A. First we note that by Lemma 4.38

TBN is computable since B is. We also know by Corollary 5.11 that TAN � TBN . Additionally, because

we are assuming that TAN is computably categorical, we know that we actually have TAN �c TBN .

We can now apply Corollary 5.15 with d = 0, which yields that F (TAN) �c F (TBN). Furthermore,

we can also apply Corollary 5.16 which gives that A �c F (TAN) and B �c F (TBN). Putting this all

together yields the following:

A �c F (TAN) �c F (TBN) �c B

145

This means that A and B are computably isomorphic as desired. (We can compose the computable

isomorphisms between A and F (TAN), F (TAN) and F (TBN), and F (TBN) and B.) Therefore, since B

was chosen arbitrarily, this means that A is computably categorical. Hence if TAN is computably

categorical, then so, too, is A.

We now show that relative computable categoricity for a nested equivalence structure coincides

with relative computable categoricity of its corresponding full finite height tree.

Lemma 6.4. Let A be a computable n-nested equivalence structure, and let TAN be its corresponding

tree built as in Theorem 4.41. Then,

A is relatively computably categorical ⇐⇒ TAN is relatively computably categorical

Proof. Note that if A is computable, then TAN is also computable by Lemma 4.38. We first assume

that A is relatively computably categorical. To show that TAN is relatively computably categorical,

we let S be some (not necessarily computable) tree isomorphic to TAN . We need to show then that S

is deg(S)-isomorphic to TAN . By Corollary 5.8 we know then that F (TAN) � F (S). Furthermore, by

Corollary 5.16 and because we know that A is computable, we know that F (TAN) �c A. Therefore,

we have that:

A �c F (TAN) � F (S)

Since therefore A and F (S) must be isomorphic, and A is relatively computably categorical by

assumption, this yields that A �deg(S) F (S). Putting this all together gives:

F (S) �deg(S) A �c F (TAN)

Therefore F (S) �deg(S) F (TAN). (We can compose the computable isomorphism between A and

F (TAN) with the deg(S)-computable isomorphism between F (S) and A.) Applying Corollary 5.14

then yields that TAN �deg(S) S, as desired. Therefore if A is relatively computably categorical, so,

too, is TAN .

We now assume that TAN is relatively computably categorical. Let B be some (not necessar-

ily computable) nested equivalence structure isomorphic to A. We need to show then that B is

deg(B)-isomorphic to A. Applying Corollary 5.11 we have that TAN � TBN . Since TAN is relatively

computably categorical by assumption, this yields then that TAN �deg(TBN)
TBN . Then, applying

Corollary 5.14 gives us that F (TAN) �deg(TBN)
F (TBN). Finally, we can apply Corollary 5.16 to get

146

the following:

A �deg(A) F (TAN) �deg(TBN)
F (TBN) �deg(B) B

Note that A is computable by assumption, and TBN ≤T B by Lemma 4.38. Therefore there is an

isomorphism from A to B which is computable in deg(B). (We can simply compose the above

isomorphisms together to produce a deg(B)-computable isomorphism.) Therefore A �deg(B) B as

desired. Hence if TAN is relatively computably categorical, then A is also relatively computably

categorical.

We can now take the prior two results on finitely nested equivalence structures and combine it

with those obtained by Lempp, McCoy, Miller, and Solomon in [31] on trees of finite height to yield

a very nice classification of computable categoricity for finitely nested equivalence structures.

Theorem 6.5. Let A be a computable n-nested equivalence structure, and let TAN be its correspond-

ing tree built as in Theorem 4.41. Then the following are equivalent:

1. A is computably categorical

2. A is relatively computably categorical

3. TAN is computably categorical

4. TAN is relatively computably categorical

5. TAN is a tree of finite type

Proof. We combine the results obtained in Theorem 6.1 with those in Lemma 6.3 and Lemma 6.4.

We now can also additionally explore the number of computable isomorphism classes of a finitely

nested equivalence structure. We examine the computable dimension of such a structure in relation

to the computable dimension of its corresponding tree.

Lemma 6.6. Let A be a computable n-nested equivalence structure, and let TAN be its corresponding

tree built as in Theorem 4.41. Then the computable dimension of A = the computable dimension of

TAN .

Proof. We first assume that A has finite computable dimension m. This means that there exist

computable nested equivalence structures B1, . . . ,Bm to represent each of the m-many computable

isomorphism classes of A. That is, there exist finitely nested equivalence structures B1, . . . ,Bm such

that:

147

i. B1, . . . ,Bm � A

ii. B1, . . . ,Bm are computable

iii. Bi ��c Bj for i �= j

iv. ∀ computable B such that B � A, then B �c Bi for some i ∈ {1, . . . ,m}

Therefore to show TAN also has computable dimensionm we need to find exactlym-many computable

isomorphism classes of TAN . Consider the trees TB1N , . . . , TBmN . Then we have the following:

i. From Corollary 5.11 we know that B1, . . . ,Bm � A ⇐⇒ TB1N , . . . , TBmN � TAN .

ii. For each i ∈ {1, . . . ,m} we know from Lemma 4.38 that TBiN ≤T Bi. Therefore, since each Bi

is computable, this means that each TBiN is also computable.

iii. Let i �= j and assume to the contrary that TBiN �c TBjN . Then by Corollary 5.14 we know that

F (TBiN) �c F (TBjN). By Corollary 5.16 we also have that:

Bi �c F (TBiN) �c F (TBjN) �c Bj

This implies that Bi �c Bj , which contradicts our assumption iii. above that Bi ��c Bj for

i �= j. Therefore TBiN ��c TBjN .

iv. Let S be some computable tree such that S � TAN . By Corollary 5.8 and Corollary 5.16 we

know that:

F (S) � F (TAN) � A

Therefore, F (S) is some nested equivalence structure which is isomorphic to A. Therefore, by

assumption since A has computable dimension m with representatives B1, . . . ,Bm, we know

that F (S) �c Bi for some i ∈ {1, . . . ,m}. Therefore, also applying Corollary 5.16 again, we

have that:

F (S) �c Bi �c F (TBiN)

Therefore F (S) �c F (TBiN), and applying Corollary 5.14 yields then that S �c TBiN .

Hence, by i.-iv. we know that TAN also has exactly m-many computable isomorphism classes, and

hence the computable dimension of TAN is also m.

We now assume that the computable dimension of TAN is m and show that the computable

dimension of A is also m. Since the computable dimension of TAN = m, this means that there exist

148

trees S1, . . . ,Sm to represent each of the m-many computable isomorphism classes of TAN . That is,

there exist finite height trees S1, . . . ,Sm such that:

i. S1, . . . ,Sm � TAN

ii. S1, . . . ,Sm are computable

iii. Si ��c Sj for i �= j

iv. ∀ computable S such that S � TAN , then S �c Si for some i ∈ {1, . . . ,m}

Therefore to show A also has computable dimension m we need to find exactly m-many computable

isomorphism classes of A. Consider the nested equivalence structures F (S1), . . . , F (Sm). Then we

have the following:

i. By Corollary 5.16 we know that A � F (TAN). Furthermore, by Corollary 5.8 we know that for

each i ∈ {1, . . . ,m} F (Si) � F (TAN). Therefore, for each i

F (Si) � F (TAN) � A

ii. By Theorem 5.12 we know that F (Si) is Si computable for each i ∈ {1, . . . ,m}. Therefore,

since S1, . . . ,Sm are all computable by assumption, so too are F (S1), . . . , F (Sm).

iii. Let i �= j and assume to the contrary that F (Si) �c F (Sj) By Corollary 5.14 this means that

Si �c Sj , a contradiction to our assumption above. Therefore F (Si) ��c F (Sj).

iv. Let B be some computable nested equivalence structure isomorphic to A. Applying Corol-

lary 5.16 and the fact that B is computable, we have that

F (TBN) �c B � A � F (TAN)

We can now apply Corollary 5.8 and get that TBN � TAN . Furthermore, since B is computable,

then by Lemma 4.38 TBN is also computable. Therefore TBN is a computable tree isomorphic to

TAN . Since TAN has computable dimension m with representatives S1, . . . ,Sm, this means that

TBN �c Si for some i ∈ {1, . . . ,m}. Now, applying Corollary 5.14 yields that F (TBN) �c F (Si),

and therefore

B �c F (TBN) �c F (Si)

Hence B is computably isomorphic to F (Si) for some i ∈ {1, . . . ,m}.

149

Therefore, by the above we know that A has exactly m-many computable isomorphism classes, and

hence the computable dimension of A is also m.

We have now shown that for finite computable dimensions, the computable dimension of A is

equal to the computable dimension of TAN . Note, though, that there was nothing special about

the given proof which required m to be finite. If instead by assumption A or TAN had computable

dimension equal to ω, we could have easily substituted representatives “B1,B2, . . .” and “S1,S2, . . .”

for the computable isomorphism classes of A and TAN respectively, and changed our proof to show

“for each i ∈ {1, 2, . . .}” instead of “for each i ∈ {1, . . . ,m} as we showed. The rest of the proof

would remain identical.

Therefore, A and TAN have the same computable dimension, regardless of whether that com-

putable dimension is finite or infinite.

Now that we know that the computable dimension of a nested equivalence structure is identical

to the computable dimension of its corresponding tree, we can now apply results obtained in [31]

by Lempp, McCoy, Miller, and Solomon about the computable dimension of finite height trees to

inform us about the computable dimension of finitely nested equivalence structures.

Theorem 6.7. Let A be a computable finitely nested equivalence structure. Then the computable

dimension of A must be equal to 1 or ω.

Proof. We apply the results from Theorem 6.2 and Lemma 6.6.

We can also examine whether finitely nested equivalence structures are d-computably categorical,

for various Turing degrees, d. We first investigate the relationship between the categoricity spectra

of finitely nested equivalence structures and their corresponding trees of finite height.

Theorem 6.8. Let A be a computable finitely nested equivalence structure, and let TAN be its cor-

responding tree built as in Theorem 4.41. Then,

CatSpec(A) = CatSpec(TAN)

Proof. We first let d ∈ CatSpec(A). This means that A is d-computably categorical. We wish to

show that d is also contained in CatSpec(TAN). Let S be some computable tree isomorphic to TAN .

If S is computable, then by Lemma 4.21 so, too, is F (S). Applying Corollary 5.13 and Corollary 5.8

then gives

A �c F (TAN) � F (S)

150

Since A is d-computably categorical by assumption, A and F (S) must be isomorphic via a d-

computable isomorphism. Therefore,

F (TAN) �c A �d F (S)

Therefore, F (TAN) �d F (S), and we can apply Corollary 5.15 to get that TAN �d S. Therefore,

since S was chosen arbitrarily, TAN is indeed d-computably categorical, and hence d ∈ CatSpec(TAN)

Now we let d ∈ CatSpec(TAN) and show this implies that d ∈ CatSpec(A). Let B be some

computable finitely nested equivalence structure isomorphic to A. Therefore by Lemma 4.21 TBN is

computable, and by Corollary 5.11 we know that TAN � TBN . Since d ∈ CatSpec(TAN) this means

that TAN must be d-computably categorical, and hence in fact TAN �d TBN . We can now apply

Corollary 5.15 and Corollary 5.16 to get that:

B �c F (TBN) �d F (TAN) �c A

This yields that B �d A. Therefore, since B was chosen arbitrarily, A must be d-computably

categorical and hence d ∈ CatSpec(A). Therefore CatSpec(A) = CatSpec(TAN).

6.3 Turing Degree Spectra of Nested Equivalence Structures

We now turn our attention to examining finitely nested equivalence structures and their correspond-

ing full finite height trees with regards to the spectrum of the Turing degrees of each structure.

Theorem 6.9. Let A be a finitely nested equivalence structure with domain N, and let TAN be its

corresponding tree built as in Theorem 4.41. Then,

DgSp(A) = DgSp(TAN)

Proof. Let A be some (not necessarily computable) finitely nested equivalence structure with domain

N, and let TAN be its corresponding A-computable tree as built in Theorem 4.41. We first let

b ∈ DgSp(A). That is, b = deg(B) for some nested equivalence structure B such that B � A. Note

that by Theorem 5.17, B ≡T TBN , and therefore b = deg(B) = deg(TBN). By Corollary 5.11 we know

that TBN � TAN . Therefore deg(TBN) = b ∈ DgSp(TAN).

We now let s ∈ DgSp(TAN). That is s = deg(S) for some full finite height tree S such that

S � TAN . By Theorem 5.18 we know that S ≡T ASN = F (S), for our functor F : FFT → NEquiv.

151

Therefore s = deg(S) = deg(F (S)). By Corollary 5.8 and Corollary 5.16 we know that:

ASN = F (S) � F (TAN) � A

Therefore, F (S) � A and hence s = deg(F (S)) ∈ DgSp(A). Therefore, DgSp(A) = DgSp(TAN).

In addition to examining the Turing degree spectrum of finitely nested equivalence structures and

their corresponding trees, we can also examine the Turing degree spectrum of relations on finitely

nested equivalence structures and their corresponding trees.

We can think of a relation, R, on a finitely nested equivalence structure A as a set of natural

numbers. We say then that the relation R “holds” on a if a ∈ R. We can then define a corresponding

relation R̂ on TAN as being a relation on end nodes of TAN ; that is R̂ = the set of end nodes of TAN

which correspond to the 1-element En+1-equivalence classes of A for which R holds. For a more

formal definition, we use the tree TA and the notation from Section 4.5. Let A = (N, E1, . . . , En) be

a finitely nested equivalence structure, and let R be some relation on A. We define relations R̂TA

and R̂ on trees TA and TAN respectively as follows:

[a]Ei ∈ R̂
TA defn

⇐⇒ a ∈ R and i = n+ 1 (6.1)

x ∈ R̂
defn
⇐⇒ (ĥTA

N)-1(x) ∈ R̂
TA (6.2)

⇐⇒ (ĥTA
N)-1(x) = [a]En+1 and a ∈ R

Similarly, if we are given some relation R̂ on end nodes of TAN , we can define a corresponding

relation R on elements of A, such that R holds for a exactly when the corresponding end node of

TAN holds under R̂. Given a finitely nested equivalence structure A and a relation R̂ on end nodes

of TAN , we formally define relations R̂TA on TA and R on A from R̂ as follows. We again use the

tree TA and the notation as set up in Section 4.5.

[a]En+1 ∈ R̂
TA defn

⇐⇒ ĥ
TA
N ([a]En+1) ∈ R̂ (6.3)

a ∈ R
defn
⇐⇒ [a]En+1 ∈ R̂

TA (6.4)

We now note that the relations R, R̂TA , and R̂ are all Turing equivalent.

Lemma 6.10. Let A = (N, E1, . . . , En) be a computable finitely nested equivalence structure, and

let TAN be its corresponding tree built as in Theorem 4.41. Furthermore, let R be some relation on

152

A and let R̂TA and R̂ be relations on TA and TAN respectively, as defined in Equations 6.1 and 6.2.

Then,

R ≡T R̂
TA ≡T R̂

Proof. The proof is straightforward from Equations 6.1 to 6.4. We show R̂TA ≡T R and R̂ ≡T R̂TA .

We first show R̂TA ≤T R. Given some [a]Ei ∈ TA, to see if [a]Ei ∈ R̂TA , we first ask whether

i = n + 1. If not, then [a]Ei /∈ R̂TA . If yes, then we ask our R-oracle whether a ∈ R. If not, then

[a]Ei /∈ R̂TA . If yes, then [a]Ei ∈ R̂TA .

It is also clear that R ≤T R̂TA . Given some a ∈ N, to see whether a ∈ R, we simply ask our

R̂TA -oracle whether [a]En+1 ∈ R̂TA . If yes, then a ∈ R. If no, then a /∈ R.

We now show that R̂ ≤T R̂TA . Given some x ∈ N, to see whether x ∈ R̂, we first calculate

levelTAN (x). This is computable by Lemma 4.3. If levelTAN (x) �= n+1, then x /∈ R̂. If levelTAN (x) =

n + 1, then calculate (ĥTA
N)-1(x). This is computable by Lemma 4.33. Now, using our R̂TA -oracle,

ask (ĥTA
N)-1(x) ∈ R̂TA . If yes, then x ∈ R̂. If no, then x /∈ R̂.

Finally, it is clear that R̂TA ≤T R̂. Given some [a]Ei ∈ TA, to see if [a]Ei ∈ R̂TA , we first check

if i = n + 1. If not, then [a]Ei /∈ R̂TA . If yes, then calculate ĥ
TA
N ([a]Ei). This is computable by

Lemma 4.33. Now ask our R̂-oracle whether ĥTA
N ([a]Ei) ∈ R̂. If yes, then [a]Ei ∈ R̂TA . If not, then

[a]Ei /∈ R̂TA .

We now show that the Turing degree spectrum of a relation on a finitely nested equivalence

structure is identical to that of its corresponding tree and corresponding relation.

Theorem 6.11. Let A = (N, E1, . . . , En) be a computable finitely nested equivalence structure, and

let TAN be its corresponding tree built as in Theorem 4.41. Furthermore, let R be some relation on

A and let R̂ be its corresponding relation on TAN as defined in Equation 6.1. Then,

DgSpA(R) = DgSpTAN
(R̂)

Proof. The proof is contained in the following lemmas: Lemma 6.12 and Lemma 6.13.

Lemma 6.12. Let A = (N, E1, . . . , En) be a computable finitely nested equivalence structure, and

let TAN be its corresponding tree built as in Theorem 4.41. Furthermore, let R be some relation on

A and let R̂ be its corresponding relation on TAN as defined in Equation 6.1. Then,

DgSpA(R) ⊆ DgSpTAN
(R̂)

153

Proof. We let d ∈ DgSpA(R). This means that there exists some computable nested equivalence

structure B = (N, EB
1 , . . . , E

B
n) which is isomorphic to A via some isomorphism g under which

deg
�
g(R)

�
= d. Now, to show that d ∈ DgSpTAN

(R̂), we need to show there exists some computable

tree isomorphic to TAN via some isomorphism f such that deg
�
f(R̂)

�
= d. We will show that TBN is

such a tree. First note that by construction, TBN has domain N. Furthermore, since B is computable,

so too is TBN (by Lemma 4.38). Additionally, by Corollary 5.11, TAN � TBN since A � B. Therefore,

we need only build an appropriate isomorphism f : TAN → TBN which yields a degree d image of the

relation. We will build such an f out of g.

Before doing so, we will first define an isomorphism f̃ : TA → TB. Recall that p(TB, [g(a)]EB
n+1

, i) =

the ith level predecessor on TB of [g(a)]EB
n+1

. We define f̃ as follows.

f̃([a]Ei)
defn
= p(TB, [g(a)]EB

n+1
, i)

We now need to show that f̃ is indeed an isomorphism. First, to show f̃ is 1-1, we let [a]Ei , [b]Ej

be nodes in TA.

f̃([a]Ei) = f̃([b]Ej) =⇒ p(TB, [g(a)]EB
n+1

, i) = p(TB, [g(b)]EB
n+1

, j)

=⇒ i = j and g(a) = g(b) (since TB nodes labeled uniquely)

=⇒ a = b (since g an isomorphism and ∴ 1-1)

=⇒ [a]Ei = [b]Ej

Now, to show that f̃ is onto, we let [b]EB
j
be a node in TB. We need to find a node x in TA for which

f̃(x) = [b]EB
j
. Since [b]EB

j
is a node in TB, this means that b is some element in B. Since g : A → B is

an isomorphism, this means that there exists a unique element a ∈ A such that g(a) = b. Now, we

let c be the least element in A such that cEja. This means that as equivalence classes [a]Ej = [c]Ej ,

and furthermore, [c]Ej ∈ CA = TA. We now consider g(c). Since cEja and g preserves equivalence

relations, we know that g(c)EB
j g(a). Therefore g(a) = b ∈ [g(c)]EB

j
, when viewed as an equivalence

class. This yields:

p(TB, [g(a)]EB
n+1

, j) = p(TB, [g(c)]EB
n+1

, j) = p(TB, [b]EB
n+1

, j) = [b]EB
j

Recall that [b]EB
j
∈ TB by assumption. So, we let x = [c]Ej . This gives that f̃([c]Ej) = p(TB, [b]EB

n+1
, j) =

[b]EB
j
, as desired.

154

Finally, we need to show that f̃ preserves order. To do this we let [a]Ei , [b]Ej be nodes in TA

such that [a]Ei ≺TA [b]Ej . Since [a]Ei ≺TA [b]Ej we know that i < j and that aEib. Since g is

an isomorphism and therefore preserves equivalence relations, this means that g(a)EB
i g(b). We let

c be the least element which is EB
i -equivalent to g(a). Hence c is also the least element which is

EB
i -equivalent to g(b). Therefore,

f̃([a]Ei) = p(TB, [g(a)]EB
n+1

, i) = [c]EB
i
= p(TB, [g(b)]EB

n+1
, i)

≺TB p(TB, [g(b)]EB
n+1

, j) = f̃([b]Ej)

Therefore [a]Ei ≺TA [b]Ej =⇒ f̃([a]Ei) ≺TB f̃([b]Ej), and hence f̃ preserves order. Therefore f̃ is

indeed an isomorphism.

Now that we have defined our isomophism f̃ : TA → TB, we can define our desired isomorphism

f : TAN → TBN which will yield a degree d image of the relation. We do so by using ĥ to go between

TAN , TBN and TA, TB respectively, as can be seen in the diagram in Figure 6.1. Formally, we define

f = ĥ
TB
N ◦ f̃ ◦ (ĥTA

N)-1. Then f is clearly an isomorphism since ĥ
TB
N , f̃ , and ĥ

TA
N all are.

TAN TA

TBN TB

(ĥTA
N)-1

ĥ
TB
N

f f̃

Figure 6.1: Construction of f from f̃ and ĥ in proof of Lemma 6.12, that d ∈ DgSpA(R) =⇒ d ∈

DgSpTAN
(R̂).

We note further one nice property of f and how it relates to g. Since g(R) is simply some set

of natural numbers in B, we can think of g(R) as itself a relation on B. Using Equation 6.2 we can

therefore define a corresponding relation �g(R) on TBN . By the way we’ve defined f and f̃ , this gives

155

us that f(R̂) = �g(R):

x ∈ f(R̂) ⇐⇒ x = f
�
ĥ
TA
N ([a]En+1)

�
for some a ∈ R (by Equations 6.1 and 6.2)

⇐⇒ x = (ĥTB
N ◦ f̃ ◦ (ĥTA

N)-1) ◦ ĥTA
N ([a]En+1) for some a ∈ R

⇐⇒ x = (ĥTB
N ◦ f̃)([a]En+1) for some a ∈ R

⇐⇒ x = ĥ
TB
N

�
f̃([a]En+1)

�
for some a ∈ R

⇐⇒ x = ĥ
TB
N

�
p(TB, [g(a)]EB

n+1
, n+ 1)

�
for some a ∈ R

⇐⇒ x = ĥ
TB
N

�
[g(a)]EB

n+1

�
for some a ∈ R

⇐⇒ x ∈ �g(R) (by Equation 6.2)

We can now put it all together:

deg
�
f(R̂)

�
= deg

��g(R)
�

(since f(R̂) = �g(R))

= deg
�
g(R)

�
(by Lemma 6.10)

= d (by assumption)

Therefore, we have found a tree, namely TBN which is isomorphic to TAN via some isomorphism f ,

under which we have that deg
�
f(R̂)

�
= d. Therefore d ∈ DgSpTAN

(R̂).

Lemma 6.13. Let A = (N, E1, . . . , En) be a computable finitely nested equivalence structure, and

let TAN be its corresponding tree built as in Theorem 4.41. Furthermore, let R be some relation on

A and let R̂ be its corresponding relation on TAN as defined in Equation 6.1. Then,

DgSpA(R) ⊇ DgSpTAN
(R̂)

Proof. Let d ∈ DgSpTAN
(R̂). This means there exists some computable tree, S = (N,≺S) which is

isomorphic to TAN via an isomorphism f such that deg
�
f(R̂)

�
= d. Now to show that d ∈ DgSpA(R),

we need to show there exists a computable nested equivalence structure isomorphic to A via some

isomorphism g such that deg
�
g(R)

�
= d. We will show that ASN is such a nested equivalence

structure.

First note that as constructed in Section 4.4, ASN has domain N and is computable since S is

computable. Additionally, as constructed in Section 5.1, ASN = F (S) where F is again our functor

F : FFT → NEquiv. By Corollary 5.15 and Theorem 5.10, we know that ASN � A. Therefore, we

156

need only build an isomorphism g which yields a degree d image of the relation. Before building g,

we will first define an isomorphism g̃ : TA → SN. An overview of what we will build is contained in

Figure 6.2.

TAN TA A

S SN ASN= F (S)

ĥ
TA
N

hS
N

f g̃ g

Figure 6.2: Construction of g̃ from f , ĥ, and h in proof of Lemma 6.13, that d ∈ DgSpTAN
(R̂) =⇒

d ∈ DgSpA(R).

Formally, we define g̃ = hS
N ◦ f ◦ ĥ

TA
N . Then g̃ is an isomorphism since f , hS

N , and ĥ
TA
N are. It is

then easy to establish the following facts:

1. (hS
N ◦ f)(R̂) = g̃(R̂TA), and

2. f(R̂) ≡T (hS
N ◦ f)(R̂).

For 1, we relate R̂ to R̂TA as in Equation 6.3 to get the following.

x ∈ (hS
N ◦ f)(R̂) ⇐⇒ x = h

S
N
�
f(j)

�
for some j ∈ R̂

⇐⇒ x = h
S
N
�
f(ĥTA

N ([a]En+1))
�

for some ĥ
TA
N ([a]En+1) ∈ R̂

(since ĥ
TA
N is an isomorphism, and therefore onto)

⇐⇒ x ∈ g̃(R̂TA)

For 2, we begin with ≥T . Given some [j]
E

ASN
i

∈ SN and an f(R̂)-oracle, we can determine

whether [j]
E

ASN
i

∈ (hS
N ◦ f)(R̂) via the following process. Calculate levelSN([j]E

ASN
i

). This is a

computable process by Lemma 4.3. By Corollary 4.16, i = levelSN([j]E
ASN
i

). So, check whether

levelSN([j]E
ASN
i

) = n+1. If i �= n+1, then [j]
E

ASN
i

/∈ (hS
N ◦ f)(R̂). If i = n+1, then continue on and

157

compute (hS
N)

-1([j]
E

ASN
i

). This is a computable process since hS
N is computable, and by definition

this gives us the jth end node of S. Now, ask our f(R̂)-oracle whether (hS
N)

-1([j]
E

ASN
i

) ∈ f(R̂). If

yes, then hS
N
�
(hS

N)
-1([j]

E
ASN
i

)
�
= [j]

E
ASN
i

∈ (hS
N ◦ f)(R̂). If no, then [j]

E
ASN
i

not ∈ (hS
N ◦ f)(R̂). Next,

given some x ∈ S and an (hS
N ◦ f)(R̂)-oracle, we can determine whether x ∈ f(R̂) via the following

process. Calculate levelS(x), which is a computable process. If levelS(x) �= n + 1, then x /∈ f(R̂).

If levelS(x) = n + 1, then this means that x is some end node of S. Then, enumerate end nodes

of S in order (as in Lemma 4.8) until we have found j such that x = ej . This means, then, that

hS
N(x) = [j]

E
ASN
n+1

. So, we now ask our (hS
N ◦ f)(R̂)-oracle whether [j]

E
ASN
n+1

∈ (hS
N ◦ f)(R̂). If yes, then

x ∈ f(R̂). If no, then x /∈ f(R̂).

Now we can define an isomorphism g : A → ASN . We define g as follows:

g(a) = b
defn
⇐⇒ g̃([a]En+1) = [b]

E
ASN
n+1

We first show that g is indeed 1-1. Let g(a1) = g(a2) = b. This implies that g̃([a1]En+1) =

g̃([a2]En+1) = [b]
E

ASN
n+1

. But g̃ is itself an isomorphism, and therefore 1-1. Therefore [a1]En+1 =

[a2]En+1 , and hence a1 = a2 (since En+1 corresponds to the equivalence relation of equality).

Now to show that g is onto, we let b ∈ ASN . This means that [b]En+1 ∈ CASN , and hence [b]En+1

is a node of SN. Therefore, since g̃ is onto, we know there must exist some node in TA, call it

x, such that g̃(x) = [b]
E

ASN
n+1

. Since g̃ preserves the order relation on trees and [b]
E

ASN
n+1

is at level

n + 1 of SN, we know that x must be at level n + 1 of TA. Since the nodes of TA are labelled

syntactically like equivalence classes, this means that x = [a]En+1 for some a ∈ A. Therefore

g̃([a]En+1) = g̃(x) = [b]
E

ASN
n+1

. By the way we defined g, this gives us that g(a) = b, and hence g is

indeed onto.

158

Finally, we show that g preserves our equivalence relations.

aEib ⇐⇒ [a]Ei = [b]Ei (as equivalence relations)

⇐⇒ [a]Ei �TA [c]Ei and [b]Ei �TA [c]Ei

for c the least element Ei-equivalent to a and b

(by the way we built TA in Section 4.5)

⇐⇒ g̃([a]En+1) �SN g̃([c]Ei) and g̃([b]En+1) �SN g̃([c]Ei)

(since g and isomorphism and therefore preserves order)

⇐⇒ [g(a)]En+1) �SN g̃([c]Ei) and [g(b)]En+1) �SN g̃([c]Ei)

(by the way we defined g)

⇐⇒ ∃ node x = g̃([c]Ei) at level i s.t.

[g(a)]En+1) �SN x and [g(b)]En+1) �SN x

⇐⇒ g(a)E
ASN
i g(b) (by Equation 4.6)

Therefore as defined g is 1-1, onto, and preserves equivalence relations. Hence g is indeed an

isomorphism.

Finally, we show that g(R) ≡T g̃(R̂TA). We first note the following.

b ∈ g(R) ⇐⇒ b = g(a) for some a ∈ R

⇐⇒ g̃([a]En+1) = [b]
E

ASN
n+1

for some a ∈ R

⇐⇒ [b]
E

ASN
n+1

∈ g̃(R̂TA)

Therefore, it is easy to see that given a g(R)-oracle we can easily compute g̃(R̂TA). Similarly, given

a g̃(R̂TA)-oracle we can easily compute g(R).

We now put this together with facts 1. and 2. as established earlier in the proof:

deg
�
g(R)

�
= deg

�
g̃(R̂TA)

�
= deg

�
(hS

N ◦ f)(R̂)
�
= deg

�
f(R̂)

�
= d

Therefore, we found a computable nested equivalence structure ASN which is isomorphic to A via

isomorphism g under which deg
�
g(R)

�
= d. This means that d ∈ DgSpA(R).

This completes the proof of Theorem 6.11. The Turing degree spectrum of a relation on a finitely

159

nested equivalence structure is identical to the Turing degree spectrum of the corresponding relation

on the corresponding tree.

We can continue our examination of Turing degree spectra by exploring the notion of the least

Turing degree. This concept was introduced by Richter in [40]. Richter proved the following result

for trees which are represented via a partial order, the same definition we are using here.

Theorem 6.14 (Richter, [41]). Let T = (T,≺T) be some countable tree which has no computable

copy. Then DgSp(T) has no least degree.

In particular, this means that any full finite height tree with no computable copy has no least

degree in its Turing degree spectrum. Therefore, given any finitely nested equivalence structure

A, its corresponding tree TAN (as built in Theorem 4.41) has no least degree in its Turing degree

spectrum if the tree TAN has no computable copy. In order to apply Richter’s result to finitely nested

equivalence structures, then, we already have most of the necessary framework in place. We need

only prove the following easy lemma.

Lemma 6.15. Let A be some finitely nested equivalence structure and let TAN be its corresponding

full finite height tree as in Theorem 4.41. Then A does not have a computable copy ⇐⇒ TAN does

not have a computable copy.

Proof. This follows directly from Theorem 6.9. If A has no computable copy, this means that

0 /∈ DgSp(A). By Theorem 6.9, this in turn implies that 0 /∈ DgSp(TAN), and hence TAN has no

computable copy. The other direction follows similarly.

We can now state the theorem.

Theorem 6.16. Let A be a finitely nested equivalence structure which has no computable copy.

Then DgSp(A) has no least degree.

Proof. We combine the results in Theorem 6.9, Lemma 6.15, and Theorem 6.14.

6.4 Future Research

One simple course of future research may be to come up with a nicer characterization for trees of

“finite type”. Though the current characterization is complete, there may be a simpler way to view

the concept when thought of as nested equivalence structures.

160

Another avenue of future research is to see if we can use the language of nested equivalence

structures to perhaps take a different approach to examining some of the current open problems for

finite height trees. Although any such results obtained would only apply to full finite height trees,

the endeavor may still yield some interesting outcomes. Historically difficult problems on trees may

become more straightforward when examined on nested equivalence structures.

161

References

[1] Uri Andrews, Steffen Lempp, Joseph S. Miller, Keng Meng Ng, Luca San Mauro, and Andrea

Sorbi. Universal computably enumerable equivalence relations. Journal of Symbolic Logic,

79(1):60–88, 2014.

[2] C. J. Ash. Categoricity in hyperarithmetical degrees. Annals of Pure and Applied Logic,

34(1):1–14, 1987.

[3] C. J. Ash and J. F. Knight. Computable Structures and the Hyperarithmetical Hierarchy, volume

144 of Studies in Logic and the Foundations of Mathematics. Elsevier, 2000.

[4] S. Awodey. Category Theory. Number 52 in Oxford Logic Guides. Oxford University Press,

second edition, 2010.

[5] W. Calvert, V.S. Harizanov, J.F. Knight, and S. Miller. Index sets of computable structures.

Algebra and Logic, 45(5):306–325, 2006.

[6] Wesley Calvert, Douglas Cenzer, Valentina Harizanov, and Andrei Morozov. Effective cate-

goricity of equivalence structures. Annals of Pure and Applied Logic, 141(1-2):61–78, 2006.

[7] D. Cenzer, V. Harizanov, and J. B. Remmel. Computability-theoretic properties of injection

structures. Algebra and Logic, 53(1):39–69, 2014.

[8] Douglas Cenzer, Valentina Harizanov, and Jeffrey B. Remmel. Σ0
1 and Π0

1 equivalence structures.

In Mathematical theory and computational practice, volume 5635 of Lecture Notes in Computer

Science, pages 99–108. Springer, Berlin, 2009.

[9] Douglas Cenzer, Valentina Harizanov, and Jeffrey B. Remmel. Effective categoricity of injection

structures. In Models of computation in context, volume 6735 of Lecture Notes in Computer

Science, pages 51–60. Springer, Heidelberg, 2011.

162

[10] Douglas Cenzer, Valentina Harizanov, and Jeffrey B. Remmel. Σ0
1 and Π0

1 equivalence structures.

Annals of Pure and Applied Logic, 162(7):490–503, 2011.

[11] Douglas Cenzer, Valentina Harizanov, and Jeffrey B. Remmel. Two-to-one structures. Journal

of Logic and Computation, 23(6):1195–1223, 2013.

[12] Douglas Cenzer, Geoffrey Laforte, and Jeffrey Remmel. Equivalence structures and isomor-

phisms in the difference hierarchy. Journal of Symbolic Logic, 74(2):535–556, 2009.

[13] Jennifer Chubb, Andrey Frolov, and Valentina Harizanov. Degree spectra of the successor

relation of computable linear orderings. Archive for Mathematical Logic, 48(1):7–13, 2009.

[14] S. Barry Cooper. Computability Theory. Chapman Hall/CRC Mathematics Series. Chapman

and Hall/CRC, 2004.

[15] N. J. Cutland. Computability. Cambridge University Press, 1980.

[16] Ekaterina B. Fokina and Sy-David Friedman. Equivalence relations on classes of computable

structures. In Klaus Ambos-Spies, Benedikt Löwe, and Wolfgang Merkle, editors, Mathematical

Theory and Computational Practice, volume 5635 of Lecture Notes in Computer Science, pages

198–207. Springer Berlin Heidelberg, 2009.

[17] Ekaterina B. Fokina, Sy-David Friedman, Valentina Harizanov, Julia F. Knight, Charles McCoy,

and Antonio Montalbán. Isomorphism relations on computable structures. Journal of Symbolic

Logic, 77(1):122–132, 2012.

[18] Ekaterina B. Fokina, Valentina Harizanov, and Alexander Melnikov. Computable model theory.

In Rod Downey, editor, Turing’s Legacy : Developments from Turing’s Ideas in Logic, volume 42

of Lecture Notes in Logic, pages 124–194. Cambridge University Press, Cambridge, May 2014.

[19] Ekaterina B. Fokina, Iskander Kalimullin, and Russell Miller. Degrees of categoricity of com-

putable structures. Archive for Mathematical Logic, 49(1):51–67, 2010.

[20] Sergey Goncharov, Valentina Harizanov, Julia Knight, Charles McCoy, Russell Miller, and Reed

Solomon. Enumerations in computable structure theory. Annals of Pure and Applied Logic,

136(3):219–246, 2005.

[21] Sergey S. Goncharov and Bakhadyr Khoussainov. Complexity of computable models. CDMTCS

Research Report Series 190, Centre for Discrete Mathematics and Theoretical Computer Sci-

ence, University of Auckland, 2002.

163

[22] S.S. Goncharov. Autostability and computable families of constructivizations. Algebra and

Logic, 14(6):392–409, 1975.

[23] Valentina S. Harizanov. Degree spectrum of a recursive relation on a recursive structure. PhD

thesis, University of Wisconsin-Madison, 1987.

[24] Valentina S. Harizanov. Pure computable model theory. In Yu. L. Ershov, S. S. Goncharov,

A. Nerode, and J. B. Remmel, editors, Handbook of recursive mathematics, Vol. 1 — Recursive

Model Theory, volume 138 of Stud. Logic Found. Math., pages 3–114. North-Holland, Amster-

dam, 1998.

[25] Valentina S. Harizanov. Computability-theoretic complexity of countable structures. The Bul-

letin of Symbolic Logic, 8(4):457–477, December 2002.

[26] M. Harrison-Trainor, A. Melnikov, R. Miller, and A. Montalbàn. Computable functors and

effective interpretability, to appear.

[27] Denis R. Hirschfeldt. Degree spectra of relations on computable structures. Bulletin of Symbolic

Logic, 6(2):197–212, 2000.

[28] Denis R. Hirschfeldt, Bakhadyr Khoussainov, Richard A. Shore, and Arkadii M. Slinko. Degree

spectra and computable dimensions in algebraic structures. Annals of Pure and Applied Logic,

115(1-3):71–113, 2002.

[29] Asher M. Kach and Daniel Turetsky. ∆0
2-categoricity of equivalence structures. New Zealand

Journal of Mathematics, 39:143–149, 2009.

[30] Bakhadyr Khoussainov and Richard A. Shore. Computable isomorphisms, degree spectra of

relations, and Scott families. Annals of Pure and Applied Logic, 93(1-3):153–193, 1998. Com-

putability theory.

[31] Steffen Lempp, Charles McCoy, Russell Miller, and Reed Solomon. Computable categoricity of

trees of finite height. Journal of Symbolic Logic, 70(1):151–215, 2005.

[32] Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in Mathe-

matics. Springer, second edition, 1998.

[33] David Marker. Non Σn axiomatizable almost strongly minimal theories. The Journal of Symbolic

Logic, 54(3):921–927, 1989.

164

[34] Terrence S. Millar. Pure recursive model theory. In Handbook of computability theory, vol-

ume 140 of Studies in logic and the foundation of mathematics, pages 507–532. North-Holland,

Amsterdam, 1999.

[35] R. Miller, J. Park, B. Poonen, H. Schoutens, and A. Shlapentokh. A computable functor from

graphs to fields, to appear.

[36] Russell Miller. The computable dimension of trees of infinite height. Journal of Symbolic Logic,

70(1):111–141, 2005.

[37] Antonio Montalbàn. Computability theoretic classifications for classes of structures. In Pro-

ceedings of the International Congress of Mathematicians, volume II, pages 79–101, 2014.

[38] Victor A. Ocasio. Computability in the class of Real Closed Fields. PhD thesis, University of

Notre Dame, 2014.

[39] J. B. Remmel. Recursively categorical linear orderings. Proceedings of the American Mathe-

matical Society, 83(2):387–391, 1981.

[40] Linda Jean Richter. Degrees of unsolvability of models. PhD thesis, University of Illinois at

Urbana-Champaign, 1977.

[41] Linda Jean Richter. Degrees of structures. The Journal of Symbolic Logic, 46(4):723–731, 1981.

[42] R. I. Soare. Recursively Enumerable Sets and Degrees. A Study of Computable Functions and

Computably Generated Sets. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1987.

[43] R. I. Soare. Computability theory and applications. Draft 502, in preparation, January 2008.

165

Index

arithmetical hierarchy, 5

relativized, 5

arrow, 9

c.e., see computably enumerable

categoricity spectrum, 8

category, 9

chain, see finite chain

k-, 15

computable, 1, 2

function, 2

partial computable, 2

relation, 3

relative to, 3

set, 3

total computable, 2

computable copy, 6, 7

computable dimension, 7

d-, 8

computable join, 4

computable presentation, see computable copy

computably categorical, 7, 13

computably enumerable, 3, 5

computably isomorphic, 7

copy of a structure, see isomorphic copy

cycle, 14

k-, 15

d-categorical, 8

d-isomorphic, 8

D0
n, 5

D0
n-complete, 5

∆0
n, 5

∆0
n-categorical, 8

∆0
n-isomorphic, 8

equivalence of categories, 11

equivalence structure, 72

computable, 72

nested-, see nested equivalence structure

essentially onto, 11

faithful, 11

FFT, 114

finite chain, 14

k-, 15

finite type

node of, 143

tree of, 144

full functor, 11, 124

full tree, 77, 124

functor, 10

Gödel numbering, 3

halting set, 5

index set of partial injection structures, 68

166

injection structure, 12

computable, 12

isomorphic copy, 6

isomorphism, 6, 10

between nested equivalence structures, 116

between partial injection structures, 15

between trees, 114

computable, 7

d-, 8

∆-, 8

isomorphism problem, 9

isomorphism type, 7

computable, 7

jump, 5

Marker’s extensions, 13

morphism, 9

codomain of, 10

domain of, 10

in FFT, 114

in NEquiv, 116

NEquiv, 116

nested equivalence relation, 72

coarser, 73

finer, 73

nested equivalence structure, 73

A-computable, 73

n-nested, 73

computable, 73

finitely nested, 73

node, 76

end node, 80

established at stage s, 79

level of, 76–78

predecessors of, 76, 78, 79

root node, 76

object, 9

in FFT, 114

in NEquiv, 116

ω∗-orbit, 14

ω-orbit, 14

oracle, 3

orbit, 12, 14

partial 1-1 function, see partial injection

partial computable, 2

function, 2

partial computable injection structure, 13

partial injection, 13

partial injection structure, 13

Π0
n, 5

Π0
n-complete, 5

relatively computably categorical, 7

relatively ∆0
n-categorical, 8

Scott family, Scott formula, 19, 21, 45, 47, 49,

51, 52, 67

Σ0
n, 5

Σ0
n-complete, 5

strongly finite type

node of, 143

tree of, 143

structure, 5

computable, 6

countable, 6

167

tree, 76

computable, 76

finite height, 77

height of, 76

path through, 76, 77

Turing degree, 4, 6

realized in DgSpA(R), 8

Turing degree hierarchy, 4

Turing degree spectrum, 8

least degree in, 160

of a relation, 8

Turing equivalent, 4

Turing machine, 2, 3

Turing reducible, 3

Z-orbit, 14

168

	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Symbols
	Introduction
	Computability
	Computable Structure Theory
	Category Theory

	Computable Categoricity of Partial Injection Structures
	Injection Structures and Partial Injection Structures
	Classifying the Orbits
	Relatively Computably Categorical Partial Injection Structures
	Non-Computably Categorical Partial Injection Structures

	Higher Levels of Categoricity and Index Sets of Partial Injection Structures
	Relatively Δ₂-Categorical Partial Injection Structures
	Non-Δ₂-Categorical Partial Injection Structures
	Δ₃-Categoricity of Partial Injection Structures
	Index Sets of Partial Computable Injection Structures
	Future Research

	Algorithmic Equivalence of Trees and Nested Equivalence Structures
	Nested Equivalence Structures
	Trees
	Basic Notions: Drawing a Tree from a Nested Equivalence Structure
	Trees to Nested Equivalence Structures
	Nested Equivalence Structures to Trees
	Putting It All Together

	Category-Theoretic Notions of Trees and Nested Equivalence Structures
	The Categories: FFT and NEquiv
	Functor from FFT to NEquiv
	Computability of the Functor

	Computability-Theoretic Properties of Nested Equivalence Structures and Full Trees of Finite Height
	Trees of Finite Height
	Computable Categoricity of Nested Equivalence Structures
	Turing Degree Spectra of Nested Equivalence Structures
	Future Research

	References
	Index

