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Basic notions

A group is computable if its universe is algorithmically identifiable with
the natural numbers, and the group operation is computable.

How hard is it to order the elements of such a group so that the
ordering is respected by the group operation?

x < y =⇒ gx < gy

We will identify orderings with their positive cones (the set of elements
≥ e), and assess the algorithmic difficulty using the notion of relative
computablility.
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Basic notions

A ≤T B if there is an algorithm using B as an oracle that will
compute the characteristic function of A.
The Turing degree of the set A is the collection of all sets ≡T to A.

0 is the Turing degree of the computable sets, and 0′ is the Turing
degree of the jump of the empty set (i.e. the halting problem).

The jump of the set A is the collection of all indices e of programs
using oracle A that halt when their index is given as input.

A′ = {e | PA
e (e) ↓}

A is called low if its jump is as low as it can be... the same as ∅′.
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The Turing degrees
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Computable sets

Low sets

Cone above 0'
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Computable trees of orderings

Reed Solomon showed that the collection of orders of an orderable
computable group are in Turing-degree preserving bijective
correspondence with the paths on a computable tree.

Let G − {e} = {g1, g2, . . .}, and sgr(Gσ) be the semigroup generated
by {gi |σ(i) = 1} ∪ {g−1

i |σ(i) = 0}.

Non-algorithmically, the picture might look like this:
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e is not in sgr(g1, g2 , g3
-1)
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Computable trees of orderings

The paths of this tree are the total left-orderings of G (use normal
subsemigroups if you want bi-orderings).

Making the construction of the tree into a computable process requires
some guessing, and the result is that the tree has lots of leaves, but
the paths are the same.

The set of paths of a computable tree form an effectively closed set in
Cantor space, and such a class ALWAYS has a low element. (By the
Jockusch–Soare Low Basis Theorem.)

So, if it is possible to order a computable group at all, then its not too
hard.
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Computable orders?
A computable group is not always computably orderable (Downey &
Kurtz, 1986). They constructed a computable copy of

⊕
ω Z having no

computable ordering of its elements.

This gives some information about the topological space of orderings
of groups (as defined by Sikora in 2004).

Corollary (Dabkowska)

If G ∼=
⊕

ω Z, the space of orders is homeomorphic to the Cantor space.

Corollary

If G ∼=
⊕

ω Q, the space of orders is homeomorphic to the Cantor space.

Corollary

If G is torsion-free abelian of infinite rank, the space of orders is
homeomorphic to the Cantor space.
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Spectra of orderings

What is the collection of Turing degrees of the orderings of group G?

1 For computable, torsion-free abelian groups of finite rank ≥ 2, it is
all Turing degrees.

2 For computable, torsion-free abelian groups of infinite rank, it
includes all Turing degrees above 0′. (And by the Low Basis
Theorem, always a low one as well.)

3 A computable, torsion-free abelian group of infinite rank will have
an ordering in every Turing degree above the degree of the
dependence algorithm in its computable divisible closure.

We might ask if 3 is where the low ordering comes from in the
Downey–Kurtz example.

Their construction can be modified so that the corresponding
dependence algorithm has degree 0′, so, no.
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Groups with orderings in all tt-degrees

A general, sufficient condition.

Theorem
Let G be a group, and P a computably enumerable family of finite
subsets of G − {e} satisfying the following conditions for every p ∈ P.

1 e 6∈ sgr(p),

2 (∃r0, r1 ∈ P)(∃g ∈ G)[r0, r1 ⊃ p ∧ g ∈ r1 ∧ g−1 ∈ r0], and

3 (∀g ∈ G, g 6= e)(∃r ∈ P)[r ⊇ p ∧ (g ∈ r ∨ g−1 ∈ r)].

Then there is an ordering of G in every truth table- (tt-) degree.

(A related theorem is proved by Dabkowska, Dabkowski, Harizanov, and Togha.)

Jennifer Chubb (GWU) Computable groups and their orderings JMM January 8, 2009 9 / 19



What are tt-degrees?

Set A is tt-reducible to set B (written A ≤tt B) if A ≤T B and in addition,
we have the following:

1 Predictability: There are an algorithm and computable function
h(x) so that h(x) gives a bound on the amount of information the
algorithm needs from B to determine if x ∈ A.

2 Robustness: If the algorithm gets bad information from the oracle
(perhaps another set is used instead of B), it will still halt, though
possibly it will give the wrong answer about A.
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The tt-degrees

Each Turing degree shatters into countably many tt-degrees (either
one or infinitely many).

0 Computable sets

Turing degrees
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Sketch of proof.

The idea is to build a computable binary tree T with elements of P
attached to each node.

The key idea is this: If p is attached to σ on T , then the elements of p
attached to σ_0 and σ_1 witness that the branching condition 2

holds of p.

Let P = {p0, p1, p2, . . .}, and G − {e} = {g0, g1, g2, . . . } be computable
enumerations of these sets.

Our tree T will be a total computable map from 2<ω into P.
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Sketch of proof.
Stage 0:

WORK A WHILE...

p0

Stage s+1:
pσ
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Sketch of proof.
Stage 0:

WORK A WHILE...

p0

Stage s+1:
pσ

2q0 q1
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Sketch of proof.
Stage 0:

WORK A WHILE...

p0

Stage s+1:
pσ

2q0 q1
3 3

pσ^0 pσ^1
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Sketch of proof.
Let A be arbitrary, and define PA to be

⋃
s∈ω T (A � s).

The path (i.e., the set A) is tt-equivalent to the ordering PA.
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Sketch of proof.

1 PA ≤tt A.

I x ∈ PA if and only if x ∈
⋃h(x)+1

i∈ω T (A � i).
I The function h(x) = mins(x = gs) is a computable bound on

resources, and all possible oracles result in a halting computation.

2 A ≤tt PA.
I To decide if x ∈ A, construct the tree to level x , Tx . Let

h(x) = max ({S(σ) | σ ∈ dom(Tx)} ∪ {Tx(σ) | |σ| = x}).
I If Tx(σA) ⊂ PA � h(x) for some σA of length x , then

x ∈ A ⇐⇒ S(σA) ∈ PA.

Otherwise, halt and output 0.
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Thank you!
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