Topology of spaces of orderings of groups

Adam S. Sikora SUNY Buffalo Let G be a group.

A linear order < on G is a binary rel which is transitive (a < b, $b < c \Rightarrow a < c$) and either a < b or b < a or a = b for every $a, b \in G$.

< is a left order if $a < b \ \Rightarrow ca < cb,$ for every $c \in G$

< is a right order if $a < b \Rightarrow ac < bc$, for every c.

Let LO(G), RO(G) be the sets of all left and right orderings of G.

Every left ordering < defines a right ordering <' such that $a <' b \Leftrightarrow b^{-1} < a^{-1}$.

Hence $LO(G) \stackrel{1-1}{\longleftrightarrow} RO(G)$.

< is a <u>bi-order</u> on $G \Leftrightarrow$ < is both left & right order \Leftrightarrow $(a < b \Rightarrow cac^{-1} < cbc^{-1})$

Positive Cones

Positive cone of < is $P = \{g : g > e\} \subset G$. It is a semigroup such that

$$P \cup \{e\} \cup P^{-1} = G.$$
 (1)

Every semi-group $\subset G$ satisfying (1) defines a unique right order g < h iff $h^{-1}g \in P$ and a unique left order g < h iff $g^{-1}h \in P$.

sub-semi-groups of G satisfying (1) $\stackrel{1-1}{\longleftrightarrow} LO(G)$ $\stackrel{1-1}{\longleftrightarrow} RO(G)$

< is a bi-order iff $gPg^{-1} = P$ for every $g \in G$.

Classical Question: Which groups have a left order, bi-order?

Free groups, surface groups, free abelian groups are biorderable.

Locally indicable groups are right & left orderable.

My Goal: Analyze LO(G) and BiO(G).

3-ways to topologize L0(G)

Def 1. Let $U_g = \{h : e < h < g\}$. The topology on LO(G) has basis composed of finite intersections of U_g 's.

Def 2. Function: ordering \rightarrow positive cone defines $LO(G) \hookrightarrow 2^G = \{f : G \rightarrow \{0,1\}\}$ has compact-open topology. Take the induced top on LO(G).

Prop Def 1 and 2 are equivalent.

Def 3. Let $G_0 \subset G_1 \subset G_2 \ldots \subset G$ be a filtration of *G* by its subsets such that $\bigcup_i G_i = G$. For $<_1, <_2 \in LO(G)$,

$$\rho(<_1,<_2) = \frac{1}{2^r},$$

where r is the largest number such that $<_1$ and $<_2$ coincide on G_r .

 $\rho(<_1,<_2) = 0$ if such r does not exist $(r = \infty)$.

 ρ is a metric on LO(G).

Prop If filtration is by finite sets, then def 3 is equivalent to the other two. In particular, ρ does not depend on the choice of filtration.

Thm. (S.) For every G, LO(G) is a compact, totally disconnected topological space.

X is totally disconnected $\Leftrightarrow \forall x_1 \neq x_2$ have disjoint open nbhds U_1, U_2 such that $U_1 \cup U_2 = X$.

Proof of compactness: We need to prove that any $<_1, <_2, ... \in LO(G)$ has a convergent subsequence.

Construction: Since there are only finitely many orderings of elts of G_1 , there is an infinite subsequence of $<_1, <_2, ...$ whose elements induce the same order on G_1 . Now, pick out of this sequence an infinite subsequence,

which agree on G_2 , and so on ad infinitum. In this way, we get a convergent subsequence.

M. Dabkowska, M. Dabkowski, V. Harizanov, J. Przytycki, M. Veve: generalization to semigroups and other structures.

My motivation was computational algebraic geometry.

Every $I \triangleleft \mathbb{C}[x_1, ..., x_n]$ has a Gröbner basis with respect to a given monomial ordering (i.e. an ordering of semi-group \mathbb{N}^n).

Thm Each ideal has a universal Gröbner basis.

Def 1. < is isolated in LO(G) if it uniquely determined by

 $a_1 < b_1 \& \dots \& a_n < b_n$

for some $a_1, b_1, \ldots, a_n, b_n \in G$.

Prop If the positive cone of < is fin. generated semi-group then < is isolated.

Prop If G has no isolated orderings then LO(G) = the Cantor set or \emptyset .

Similarly, if G has no isolated bi-orderings then BiO(G) = the Cantor set or \emptyset .

Eg. \mathbb{Z}^n has no isolated orderings, for n > 1.

There are examples of groups with infinite countable Bi(G).

We conjectured that free groups have no isolated left orderings. **Thm** Free groups have no isolated left orderings. Hence $LO(F_n)$ is Cantor set.

Proofs:

 Storozhuk-Kopytov that it follows from McCleary'85 work on lattice ordered groups.
A. Navas

Conj F_n does not have isolated bi-orderings.

Conrad orderings

Thm (Conrad) Let < be a left order on G. For any g, h > e TFAE: 1. $(gh)^n > hg$ for some n. 2. if g < h then $gh^ng^{-1} > h$ for some n3. $g^nh > g$ for some n.

Navas: One can take n = 2.

Def < is Conradian iff it satisfies above conds.

Every bi-order is Conradian.

Given (G, <), $H \subset G$ is <u>convex</u> if for every $h_1, h_2 \in H$, and $g \in G$ such that $h_1 < g < h_2$, $g \in H$.

Eg. \mathbb{Z}^2

Properties

- (1) $\{e\}, G$ are convex subgroups of G
- (2) any intersection of convex subgroups is convex
- (3) any union of convex subgroups is convex
- (4) if H_1, H_2 are convex then $H_1 \subset H_2$ or $H_2 \subset H_1$.

 $H' \subset H$ is a jump, denoted by $H' \prec H$, if there is no H'' such that $H' \subset H'' \subset H$.

Thm(Conrad) < is Conradian iff (5) $H' \triangleleft H$ for all $H' \prec H$ and $H/H' \subset \mathbb{R}$ (as an ordered group). H/H' is a jump quotient.

Prop

(6) The induced order on H/H' has no proper convex subgroups.

Thm Conrad orderings $\stackrel{1-1}{\longleftrightarrow}$ systems of subgroups of *G* (with ordered jump quotients) satisfying (1)-(6).

Cor $Co(G) = \emptyset$ or 2^n or Cantor set.

 $\{e\} = G_n \triangleleft G_{n-1} \triangleleft \dots \triangleleft G_0 = G$ is a <u>rational series</u> for G if $G_k/G_{k+1} \subset \mathbb{Q}$.

By Tatarin, if $|Co(G)| = 2^n$ then G has a rational series of length n and that series is unique.

Thm G is Conrad orderable iff G is locally indicable, i.e. every fin. gen subgroup of G has an epimorphim onto \mathbb{Z} . \Leftarrow Brodskii, \Rightarrow Navas.

Thm(Navas) If LO(G) is finite then, LO(G) = Co(G).

Cor If LO(G) is finite then $|LO(G)| = 2^n$ or 0.

Conj |Bi(G)| can be any even number.