Limit points in the space of left orderings of a group

Adam Clay

University of British Columbia Joint work with Dale Rolfsen

January 8, 2009

Adam Clay (2008)

Limit points in the space of left orderings of a

January 8, 2009 1 / 12

(日) (周) (三) (三)

Let G be a group, and define LO(G) to be the set of all positive cones $P \subset G$ satisfying:

• $P \cdot P \subset P$, and

- 20

A B F A B F

Let G be a group, and define LO(G) to be the set of all positive cones $P \subset G$ satisfying:

- $P \cdot P \subset P$, and
- $P \sqcup P^{-1} \sqcup \{1\} = G.$

Let G be a group, and define LO(G) to be the set of all positive cones $P \subset G$ satisfying:

- $P \cdot P \subset P$, and
- $P \sqcup P^{-1} \sqcup \{1\} = G.$

Note that $LO(G) \subset 2^G$, and so subbasis for the natural topology on LO(G) is all sets of the form

$$U_g = \{P \in LO(G) : g \in P\}.$$

• • = • • = •

Let G be a group, and define LO(G) to be the set of all positive cones $P \subset G$ satisfying:

- $P \cdot P \subset P$, and
- $P \sqcup P^{-1} \sqcup \{1\} = G.$

Note that $LO(G) \subset 2^G$, and so subbasis for the natural topology on LO(G) is all sets of the form

$$U_g = \{P \in LO(G) : g \in P\}.$$

The space LO(G) also comes equipped with a natural G-action by conjugation: A positive cone P is sent to gPg^{-1} by $g \in G$.

Theorem (Sikora)

Let G be a countable group. Then LO(G) is a compact, metrizable, totally disconnected space. If LO(G) has no isolated points, then LO(G)is homeomorphic to the Cantor set.

- 4 同 6 4 日 6 4 日 6

Theorem (Sikora)

Let G be a countable group. Then LO(G) is a compact, metrizable, totally disconnected space. If LO(G) has no isolated points, then LO(G)is homeomorphic to the Cantor set.

Therefore, for a given group G, we look for isolated points in LO(G); those positive cones P satisfying

$$\{P\}=\bigcap_{i=1}^n U_{g_i},$$

for some finite family of elements $g_i \in G$.

< 回 ト < 三 ト < 三 ト

Theorem (Sikora)

Let G be a countable group. Then LO(G) is a compact, metrizable, totally disconnected space. If LO(G) has no isolated points, then LO(G)is homeomorphic to the Cantor set.

Therefore, for a given group G, we look for isolated points in LO(G); those positive cones P satisfying

$$\{P\}=\bigcap_{i=1}^n U_{g_i},$$

for some finite family of elements $g_i \in G$. One way of determining that $P \in LO(G)$ is not an isolated point is to show that it is an accumulation point of its conjugates $gPg^{-1} \in LO(G)$.

・ロット 4 回 > 4 回 > 4 回 > - 三 - うらで

Recall that for each integer $n \ge 2$, the Artin braid group B_n is the group generated by $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$, subject to the relations

 $\sigma_i \sigma_j = \sigma_j \sigma_i$ if |i - j| > 1, $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$ if |i - j| = 1.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Recall that for each integer $n \ge 2$, the Artin braid group B_n is the group generated by $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$, subject to the relations

$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
 if $|i - j| > 1$, $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$ if $|i - j| = 1$.

Definition

Let w be a word in the generators $\sigma_i, \dots, \sigma_{n-1}$. Then w is said to be: *i*-positive if the generator σ_i occurs in W with only positive exponents, *i*-negative if σ_i occurs with only negative exponents, and *i*-neutral if σ_i does not occur in w.

・ロト ・ 一 ・ ・ ミト ・ ミト ・ ショー くりくつ

The Dehornoy ordering

Definition

The positive cone $P_D \subset B_n$ of the Dehornoy ordering is the set

 $P_D = \{\beta \in B_n : \beta \text{ is } i \text{-positive for some } i \leq n-1\}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

The Dehornoy ordering

Definition

The positive cone $P_D \subset B_n$ of the Dehornoy ordering is the set

 $P_D = \{\beta \in B_n : \beta \text{ is } i \text{-positive for some } i \leq n-1\}.$

Essential properties of the Dehornoy ordering:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Definition

The positive cone $P_D \subset B_n$ of the Dehornoy ordering is the set

 $P_D = \{\beta \in B_n : \beta \text{ is } i \text{-positive for some } i \leq n-1\}.$

Essential properties of the Dehornoy ordering:

The subword property - for every $\beta \in B_n$, and for every generator σ_i , we have $\beta \sigma_i \beta^{-1} \in P_D$.

・ロット 4 回 > 4 回 > 4 回 > - 三 - うらで

Definition

The positive cone $P_D \subset B_n$ of the Dehornoy ordering is the set

 $P_D = \{\beta \in B_n : \beta \text{ is } i \text{-positive for some } i \leq n-1\}.$

Essential properties of the Dehornoy ordering:

The subword property - for every $\beta \in B_n$, and for every generator σ_i , we have $\beta \sigma_i \beta^{-1} \in P_D$.

The Dehornoy ordering is discrete, with least element σ_{n-1} .

・ロット 4 回 > 4 回 > 4 回 > - 三 - うらで

The positive cone $P_D \in LO(B_n)$ an accumulation point of its conjugates for n > 2.

イロト 人間ト イヨト イヨト

The positive cone $P_D \in LO(B_n)$ an accumulation point of its conjugates for n > 2.

In other words, we must show that given any finite family $\beta_1, \beta_2, \cdots, \beta_m$ with $P_D \in \bigcap_{i=1}^m U_{\beta_i}$, there exists $\alpha \in B_n$ with:

The positive cone $P_D \in LO(B_n)$ an accumulation point of its conjugates for n > 2.

In other words, we must show that given any finite family $\beta_1, \beta_2, \dots, \beta_m$ with $P_D \in \bigcap_{i=1}^m U_{\beta_i}$, there exists $\alpha \in B_n$ with:

• $\alpha P_D \alpha^{-1} \in \bigcap_{i=1}^m U_{\beta_i}$, and

The positive cone $P_D \in LO(B_n)$ an accumulation point of its conjugates for n > 2.

In other words, we must show that given any finite family $\beta_1, \beta_2, \cdots, \beta_m$ with $P_D \in \bigcap_{i=1}^m U_{\beta_i}$, there exists $\alpha \in B_n$ with:

- **1** $\alpha P_D \alpha^{-1} \in \bigcap_{i=1}^m U_{\beta_i}$, and
- $\ 2 \ \alpha P_D \alpha^{-1} \neq P_D.$

・ロト ・ 一 ・ ・ ミト ・ ミト ・ ショー くりくつ

() If β_i is a power of σ_2 , then $\alpha^{-1}\beta_i\alpha \in P_D$, this is the subword property.

- If β_i is a power of σ_2 , then $\alpha^{-1}\beta_i\alpha \in P_D$, this is the subword property.
- 2 If β_i is not a power of σ_2 , then $\alpha \leq \beta_i$ implies $1 \leq \alpha^{-1}\beta_i$, so that $1 < \alpha^{-1}\beta_i\alpha$, since α is also positive.

If β_i is a power of σ₂, then α⁻¹β_iα ∈ P_D, this is the subword property.
If β_i is not a power of σ₂, then α ≤ β_i implies 1 ≤ α⁻¹β_i, so that 1 < α⁻¹β_iα, since α is also positive.

In other words, such an α satisfies $\alpha P_D \alpha^{-1} \in \bigcap_{i=1}^m U_{\beta_i}$.

くしゃ 人間 そうき かいやう ほう ろうろ

But do we also have $\alpha P_D \alpha^{-1} \neq P_D$?

▲□▶ ▲□▶ ★ □▶ ★ □▶ ▲□ ● ● ●

But do we also have $\alpha P_D \alpha^{-1} \neq P_D$?

If α does not commute with σ_2 , then the least element of the Dehornoy ordering is σ_2 , while the least element of the ordering determined by the positive cone $\alpha P_D \alpha^{-1}$ is $\alpha \sigma_2 \alpha^{-1}$. Therefore $P_D \neq \alpha P_D \alpha^{-1}$.

Suppose that β_1, \dots, β_m is any finite family in B_3 . Then there exists α in B_3 that does not commute with σ_2 , and satisfies $1 < \alpha \leq \beta_i$ whenever β_i is not a power of σ_2 .

・ロト ・ 一 ・ ・ ミト ・ ミト ・ ショー くりくつ

Suppose that β_1, \dots, β_m is any finite family in B_3 . Then there exists α in B_3 that does not commute with σ_2 , and satisfies $1 < \alpha < \beta_i$ whenever β_i is not a power of σ_2 .

Proof.

Suppose WLOG that β_1 is the smallest of the β_i 's.

< 回 ト < 三 ト < 三 ト

Suppose that β_1, \dots, β_m is any finite family in B_3 . Then there exists α in B_3 that does not commute with σ_2 , and satisfies $1 < \alpha \leq \beta_i$ whenever β_i is not a power of σ_2 .

Proof.

Suppose WLOG that β_1 is the smallest of the β_i 's.

- If β_1 and σ_2 don't commute, choose $\alpha = \beta_1$.
- **2** If β_1 and σ_2 commute, then $\beta_1 = (\sigma_1 \sigma_2 \sigma_1)^{2p} \sigma_2^q$ for p > 1, and $\alpha = \sigma_1 \sigma_2$ works.

JOC E

イロト 人間ト イヨト イヨト

Suppose that β_1, \dots, β_m is any finite family in B_3 . Then there exists α in B_3 that does not commute with σ_2 , and satisfies $1 < \alpha \leq \beta_i$ whenever β_i is not a power of σ_2 .

Proof.

Suppose WLOG that β_1 is the smallest of the β_i 's.

- If β_1 and σ_2 don't commute, choose $\alpha = \beta_1$.
- **2** If β_1 and σ_2 commute, then $\beta_1 = (\sigma_1 \sigma_2 \sigma_1)^{2p} \sigma_2^q$ for p > 1, and $\alpha = \sigma_1 \sigma_2$ works.

So P_D is an accumulation point of its conjugates in $LO(B_3)$, Andrés Navas showed that this implies that the theorem holds for all n > 3.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

In other words, $hPh^{-1} \in \bigcap_{i=1}^{m} U_{g_i}$ if h is "small enough."

通 ト イヨ ト イヨ ト 「ヨ」 つくつ

In other words, $hPh^{-1} \in \bigcap_{i=1}^{m} U_{g_i}$ if h is "small enough." Thus, if $\{P\} = \bigcap_{i=1}^{m} U_{g_i}$ is an isolated point, then $hPh^{-1} \in \bigcap_{i=1}^{m} U_{g_i}$ implies $hPh^{-1} = P$.

通 ト イヨ ト イヨ ト 「ヨ」 つくつ

In other words, $hPh^{-1} \in \bigcap_{i=1}^{m} U_{g_i}$ if h is "small enough." Thus, if $\{P\} = \bigcap_{i=1}^{m} U_{g_i}$ is an isolated point, then $hPh^{-1} \in \bigcap_{i=1}^{m} U_{g_i}$ implies $hPh^{-1} = P$.

"Small elements are biordered."

Theorem (C)

Suppose that $P \in LO(G)$ is not an accumulation point of its conjugates. Then there exists a subgroup $C \subset G$ that is convex, and bi-ordered by the ordering of G whose positive cone is P.

Theorem (C)

Suppose that $P \in LO(G)$ is not an accumulation point of its conjugates. Then there exists a subgroup $C \subset G$ that is convex, and bi-ordered by the ordering of G whose positive cone is P.

Theorem (C)

If P is isolated in LO(G), we can conclude that C is rank one abelian.

Theorem (C)

Suppose that $P \in LO(G)$ is not an accumulation point of its conjugates. Then there exists a subgroup $C \subset G$ that is convex, and bi-ordered by the ordering of G whose positive cone is P.

Theorem (C)

If P is isolated in LO(G), we can conclude that C is rank one abelian.

This method shows that the Conradian soul of an isolated point in LO(G) is nontrivial, for any group G (not only countable).

A B F A B F

For a positive cone $P \in LO(G)$, the "small" positive elements conjugate P to be close to itself.

DOC E

イロト 人間ト イヨト イヨト

For a positive cone $P \in LO(G)$, the "small" positive elements conjugate P to be close to itself.

Thus, the ability to choose arbitrarily small elements in P should allow us to approximate P in LO(G).

- 31

イロト 人間ト イヨト イヨト

For a positive cone $P \in LO(G)$, the "small" positive elements conjugate P to be close to itself.

Thus, the ability to choose arbitrarily small elements in P should allow us to approximate P in LO(G).

"Able to choose arbitrarily small elements" happens when P gives a dense ordering of the group G.

Theorem (C)

Let G be a group in which every rank one abelian subgroup is isomorphic to \mathbb{Z} , and let $Z \subset LO(G)$ be the set of all dense orderings of G. Then \overline{Z} is a Cantor set, and Z is a dense G_{δ} set in \overline{Z} .

通 ト イヨ ト イヨト