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The space of left orderings

Let G be a group, and define LO(G ) to be the set of all positive cones
P ⊂ G satisfying:

P · P ⊂ P, and

P t P−1 t {1} = G .

Note that LO(G ) ⊂ 2G , and so subbasis for the natural topology on
LO(G ) is all sets of the form

Ug = {P ∈ LO(G ) : g ∈ P}.

The space LO(G ) also comes equipped with a natural G -action by
conjugation: A positive cone P is sent to gPg−1 by g ∈ G .
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Theorem (Sikora)

Let G be a countable group. Then LO(G ) is a compact, metrizable,
totally disconnected space. If LO(G ) has no isolated points, then LO(G )
is homeomorphic to the Cantor set.

Therefore, for a given group G , we look for isolated points in LO(G );
those positive cones P satisfying

{P} =
n⋂

i=1

Ugi ,

for some finite family of elements gi ∈ G .
One way of determining that P ∈ LO(G ) is not an isolated point is to
show that it is an accumulation point of its conjugates gPg−1 ∈ LO(G ).
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The braid groups

Recall that for each integer n ≥ 2, the Artin braid group Bn is the group
generated by σ1, σ2, . . . , σn−1, subject to the relations

σiσj = σjσi if |i − j | > 1, σiσjσi = σjσiσj if |i − j | = 1.

Definition

Let w be a word in the generators σi , · · · , σn−1. Then w is said to be:
i-positive if the generator σi occurs in W with only positive exponents,
i-negative if σi occurs with only negative exponents, and i-neutral if σi

does not occur in w .

Adam Clay (2008) Limit points in the space of left orderings of a group January 8, 2009 4 / 12



The braid groups

Recall that for each integer n ≥ 2, the Artin braid group Bn is the group
generated by σ1, σ2, . . . , σn−1, subject to the relations

σiσj = σjσi if |i − j | > 1, σiσjσi = σjσiσj if |i − j | = 1.

Definition

Let w be a word in the generators σi , · · · , σn−1. Then w is said to be:
i-positive if the generator σi occurs in W with only positive exponents,
i-negative if σi occurs with only negative exponents, and i-neutral if σi

does not occur in w .

Adam Clay (2008) Limit points in the space of left orderings of a group January 8, 2009 4 / 12



The Dehornoy ordering

Definition

The positive cone PD ⊂ Bn of the Dehornoy ordering is the set

PD = {β ∈ Bn : β is i-positive for some i ≤ n − 1}.

Essential properties of the Dehornoy ordering:
The subword property - for every β ∈ Bn, and for every generator σi , we
have βσiβ

−1 ∈ PD .
The Dehornoy ordering is discrete, with least element σn−1.
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Theorem (Navas, Rolfsen, C)

The positive cone PD ∈ LO(Bn) an accumulation point of its conjugates
for n > 2.

In other words, we must show that given any finite family β1, β2, · · · , βm

with PD ∈
⋂m

i=1 Uβi
, there exists α ∈ Bn with:

1 αPDα−1 ∈
⋂m

i=1 Uβi
, and

2 αPDα−1 6= PD .
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Proof in the case of B3

Given a finite family β1, · · · , βm in B3 with PD ∈
⋂n

i=1 Uβi
, suppose that

α ∈ B3 satisfies 1 < α ≤ βi , whenever βi is not a power of σ2. Then we
have:

1 If βi is a power of σ2, then α−1βiα ∈ PD , this is the subword property.

2 If βi is not a power of σ2, then α ≤ βi implies 1 ≤ α−1βi , so that
1 < α−1βiα, since α is also positive.

In other words, such an α satisfies αPDα−1 ∈
⋂m

i=1 Uβi
.
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But do we also have αPDα−1 6= PD?

If α does not commute with σ2, then the least element of the Dehornoy
ordering is σ2, while the least element of the ordering determined by the
positive cone αPDα−1 is ασ2α

−1. Therefore PD 6= αPDα−1.
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Lemma

Suppose that β1, · · · , βm is any finite family in B3. Then there exists α in
B3 that does not commute with σ2, and satisfies 1 < α ≤ βi whenever βi

is not a power of σ2.

Proof.

Suppose WLOG that β1 is the smallest of the βi ’s.

1 If β1 and σ2 don’t commute, choose α = β1.

2 If β1 and σ2 commute, then β1 = (σ1σ2σ1)
2pσq

2 for p > 1, and
α = σ1σ2 works.

So PD is an accumulation point of its conjugates in LO(B3), Andrés
Navas showed that this implies that the theorem holds for all n > 3.
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Working in an arbitrary group G

The key element to take away from this proof, that works in any group G :
If we have a positive cone P ∈

⋂m
i=1 Ugi , and we choose h ∈ G with

1 < h ≤ gi for all i , then h ≤ gi implies 1 ≤ h−1gi , so that 1 < h−1gih for
all i .

In other words, hPh−1 ∈
⋂m

i=1 Ugi if h is “small enough.”
Thus, if {P} =

⋂m
i=1 Ugi is an isolated point, then hPh−1 ∈

⋂m
i=1 Ugi

implies hPh−1 = P.
“Small elements are biordered.”
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Theorem (C)

Suppose that P ∈ LO(G ) is not an accumulation point of its conjugates.
Then there exists a subgroup C ⊂ G that is convex, and bi-ordered by the
ordering of G whose positive cone is P.

Theorem (C)

If P is isolated in LO(G ), we can conclude that C is rank one abelian.

This method shows that the Conradian soul of an isolated point in LO(G )
is nontrivial, for any group G (not only countable).
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For a positive cone P ∈ LO(G ), the “small” positive elements conjugate P
to be close to itself.

Thus, the ability to choose arbitrarily small elements in P should allow us
to approximate P in LO(G ).
“Able to choose arbitrarily small elements” happens when P gives a dense
ordering of the group G .

Theorem (C)

Let G be a group in which every rank one abelian subgroup is isomorphic
to Z, and let Z ⊂ LO(G ) be the set of all dense orderings of G. Then Z̄ is
a Cantor set, and Z is a dense Gδ set in Z̄ .
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