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Mechanochemical models of processive molecular motors
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(Received 8 February 2012; final version received 9 March 2012)

Motor proteins are the molecular engines powering the living cell. These nanometre-sized molecules convert
chemical energy, both enthalpic and entropic, into useful mechanical work. High resolution single molecule
experiments can now observe motor protein movement with increasing precision. The emerging data must be
combined with structural and kinetic measurements to develop a quantitative mechanism. This article describes a
modelling framework where quantitative understanding of motor behaviour can be developed based on the
protein structure. The framework is applied to myosin motors, with emphasis on how synchrony between motor
domains give rise to processive unidirectional movement. The modelling approach shows that the elasticity of
protein domains are important in regulating motor function. Simple models of protein domain elasticity are
presented. The framework can be generalized to other motor systems, or an ensemble of motors such as muscle
contraction. Indeed, for hundreds of myosins, our framework can be reduced to the Huxely–Simmons description
of muscle movement in the mean-field limit.

Keywords: molecular motors; myosin movement; stochastic models; coarse-grained modelling

1. Introduction

A basic paradigm of structure biology is that a

protein’s three-dimensional structure gives rise to its

function. Establishing a quantitative relationship

between structure and function requires quantitative

models of protein conformational dynamics and kinet-

ics. For this purpose, computational modelling based

on molecular dynamics (MD) simulations is an essen-

tial tool [1–3]. For a class of large protein complexes

such as molecular motors, however, operating time

scales of these macromolecules are currently beyond

the capability of MD methods. At the same time, single

molecule techniques are revealing exquisitely detailed

information about the motor mechanism [4–7]. Thus,

there is a need for models that can quantitatively

explain experimental data. In addition, essential motor

protein functions have been shown to be insensitive to

mutations of amino-acid residues away from the

catalytic site [8]. Thus, as long as the hydrolysis

chemistry is preserved, the operating principles of

molecular motors are emergent properties of the

protein structure, and should be independent of the

precise atomistic details. An understanding of these

emergent principles is the subject of this paper.
Because motor proteins convert chemical energy to

mechanical work, analogies to mechanical engines can

be invoked [9,10]. Indeed, the F1-ATPase roughly

resembles a three-chamber rotary engine [11]. Concepts

such as force–velocity relations, duty ratio and oper-

ating efficiency are equally applicable to biological

motors as well as man-made engines. From a theoret-

ical stand point, descriptions have been often less

transparent. Concepts and approaches such as ratchets

[12–15], power-strokes [16–18], Markov models [19–22]

have been used to explain single molecule data (also

summarized in [23]). The foundation of these theoret-

ical approaches, however, must rest with the molecular

structure. We will show that these approaches are

limits of a structure-based model. Just as when

discussing mechanical engines, configurations of cyl-

inders, pistons, and forces between moving parts are

quantities of interest, a mechanical theory of molecular

motors must focus on the roles of motor subunits and

how forces are transmitted between subunits.

Quantitative relationships between single motor prop-

erties and the dynamics of the motor complex must be

explicitly shown. In this article, we discuss a general

framework where the free energy of dimeric processive

molecular motors is modelled using simple mechanical

concepts. Influence of geometrical shapes of the

protein subunits is emphasized. From the free energy

landscape, conformational dynamics of the motor

domain and forces transmitted between motor

domains are analysed. Approaches such as Markov
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models, ratchets and power-strokes are various limits
of a description based on the free energy landscape.

Processive molecular motors are responsible for
cytoplasmic transport of vesicles and organelles in
eukaryotic cells [24]. Isoforms of kinesin and dynein
are cytoplasmic transporters operating on microtu-
bules [25–29]. Isoforms of myosin are actin-associated
molecular motors [30–32]. Exquisitely precise single
molecular data have been obtained for both microtu-
bule and actin motors [8,33–42]. The bewildering
variety of molecular motors may appear complex,
however, we propose that a unified framework exists to
explain processive motor dynamics, provided that a set
of mechanical and kinetic properties of the protein
subunits are understood. Using dimeric myosins as
examples, we show how the mechanics of the motor
domains can regulate enzymatic activity and lead to
processive motion. Quantitative comparisons from the
mechanical model with single molecule data are made
for the processive myosin system.

Developing a general framework of motor dynam-
ics has important implications for understanding
ensembles of motors inside cells. In eukaryotic cells,
motors interact with networks of cytoskeletal filaments
[43]. We show that by changing a few geometric
parameters, our framework can be extended to
describe motor motion across cytoskeletal junctions
[44], motions of myosin isoforms and mutants
[8,33,45–47]. The approach can also be used to describe
several motors interacting with the same cargo, or a
tug of war between motors travelling in opposite
directions [48–52]. Thus, a range of interesting phe-
nomena are contained in one theoretical approach.

In the next section, an energy landscape description
of single myosin motors is discussed. The approach of
describing single myosins is reminescent of the frame-
work developed by Eisenberg and Hill [53]. We then
describe the motor dimer energy landscape using a
simple rod model of the linker domain. Given the
energy landscape, we describe how the mechanical
structure of the motor gives rise to processive motion.
In Section 5, the energy landscape picture is combined
with stochastic dynamics to compute the expected
motor motion. These results are expanded to under-
stand motor dynamics under forces greater than stall
force and motor efficiency. Finally, the same frame-
work is applied to motors interacting with each other
and walking on cytoskeletal networks.

2. Energy landscape description of a single

protein motor

Motor proteins typically are comprised of several
subunits. Each subunit contains a single ATP

hydrolysis site. Coordinated action between the sub-
units generate mechanical work [54–56]. For instance,
myosin V and VI are dimeric actin-based motors with
two myosin subunits; kinesin is also a dimeric motor
operating on microtubules; ATP synthase is a rotary
machine with three subunits. Before discussing how the
motor subunits are coupled, it is useful to consider how
a single motor subunit must operate. We will use the
myosin monomer as an example where there is ample
structural and biochemical data.

2.1. Lever-arm movement of myosin

From extensive studies on muscle movement, it is clear
that muscle myosin undergoes a conformational tran-
sition where the converter domain rotates with respect
to the actin-binding domain. This leads to a rotation of
the light chain domain (S1) with respect to the actin
binding domain (Figure 1) [57]. X-ray structures of
scallop myosin II show that the rotation occurs in
conjunction with the release of Pi after hydrolysis of
ATP [58,59]. The structures are solved without F-actin,
although it is believed that a similar set of conforma-
tional changes occur while myosin is bound to actin
[58]. Other isoforms such as myosin V also show a
similar set of structural transitions. An anomaly is the
myosin VI isoform which appears to reverse the
direction of the power-stroke [60–62]. Structural stud-
ies revealed that there is a �50 residue insert between
the converter domain and the light chain domain that
changes the rotational direction [63,64].

In conjunction with the ATP cycle, myosin also
binds F-actin, although actin affinity depends on the
identity of the nucleotide in the catalytic site. F-actin
binding also influences the reaction rates in the
catalytic site. From extensive kinetic studies, de la
Cruz et al. has investigated the reaction rates of myosin
V monomers interacting with actin [65]. A fairly
complete picture of the myosin monomer cycle is
shown in Figure 1(c). Note that these reaction rates are
obtained in vitro where myosin can make conforma-
tional changes without mechanical hindrance.

2.2. Mechanical description of lever-arm movement

Given the available structural and kinetic information,
it is possible to consider a mechanochemical descrip-
tion of the myosin monomer based on an energy
landscape picture. We can describe the conformation
of the monomer using variables (�,�) where these
angles are defined with respect to the monomer body
axis and the F-actin plane, and are shown in Figure 2.
(Figure 1(a) shows � and �0 only. To fully specify the
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orientation of the linker domain, � and � are needed.)

The preferred conformation, (�0, �0), depends on the
nucleotide in the binding pocket and whether myosin is

bound to actin. The conformations of X-ray structures
are presumed to be the preferred conformation.

The chemical state of the monomer is described by

s which specifies the nucleotide occupancy as well as
whether myosin is bound to actin. s can be any of the

eight possible values such as (A.M.ATP) which means
that myosin is bound to F-actin with ATP in the

binding site. The simplest form of the motor energy as
a function of its conformation is then

E0ð�,�, sÞ ¼
1

2
�1ðsÞ½� � �0ðsÞ�

2
þ
1

2
�2ðsÞ�

2 þ cðsÞ, ð1Þ

where �1,2 (s) are mechanical constants of the protein

structure which may depend on the chemical state. �1,2
describes the stiffness of the myosin monomer and

governs how the conformation fluctuates. The numer-

ical values of � are not known, but estimates can be

obtained by fitting to experimental data or from MD

simulations. c(s) is a constant that defines the energy

difference between the equilibrium structures. c(s) can

be obtained from kinetic data as described in the next

paragraph. Equation (1) takes the simplest approach

and assumes a linear elastic model for the monomer,

although nonlinear models are also possible. For exam-

ple, recent experiments on kinesin seems to suggest a

more complex elastic model [66].

Motor 
Domain

Converter 
Domain

Linker 
Domain

θ

Mechanical Variable, θ

Chemical State Variable, s

θ (s)0

E (θ,s)0

k     
 (θ)

s->s’

A.M.E A.M. ATP A.M.AD P.Pi A.M.AD P A.M.E

M.ATP M.AD P.Pi M.AD P M.EM.E

(a) (b)

(c)
Actin Bound 
States

Actin Free 
States

Figure 1. Mechanical model of a single myosin motor. (a) Myosin motors undergo a conformation change (lever-arm
movement) upon hydrolysing ATP. The structures shown are the APO and ADP states of scallop myosin II. (b) The free energy
of a single motor domain can be visualized as a landscape involving at least two variables, a mechanical variable describing the
motor conformation, and a chemical variable describing the hydrolysis and actin-binding states. Chemical transition rate
functions, ks!s0, depend on the motor conformation. If the motor conformation is fixed (� remains constant), hydrolysis of ATP
still proceeds, but with different rates. (c) A typical myosin motor hydrolysing ATP as well as binding and unbinding to actin.
The approximate myosin conformation is shown. The top row are actin-bound states and the bottom row are actin-free states.
Approximately eight chemical states are considered. The red pathway is the most probably the pathway, although the path
probabilities are ultimately determined by the kinetic parameters. The transition rates going from conformational equilibrium
have been measured.
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2.3. Chemical transition rate functions

Transitions rates between different chemical states are

denoted as ks!s0. It is important to note that the

transition rate is a function of the conformation of

the myosin molecule. Imagine that we constrain the

conformation of myosin by holding the light-chain

domain fixed. This constraint in fact does not stop the

hydrolysis cycle and ATP is still converted to ADP.

However, the rates of ATP hydrolysis, and potentially

actin-binding will depend on the conformation of the

molecule [67,68]. Indeed, enzymatic activities in general

are conformationally dependent. Thus, instead of rate

constants, we must define rate functions for each of the

chemical transitions. In our modelling, we assume that

the chemical rate functions only depend on �, i.e.

ks!s0(�) (Figure 3 shows an example of conformation

dependent ADP release rate function). The measured

rate constants from de la Cruz et al. represent the net

rate of going from the preferred conformation �0(s) to
�0(s

0). In those experiments, conformational relaxation

should be much faster than chemical conversion in the

binding pocket. Thus, those rates are approximately

equivalent to ks!s0(�0(s)).
From the condition of detailed balance, the tran-

sition rates must satisfy the constraint:

ks!s0 ð�Þ

ks0!sð�Þ
¼ exp ��ðE0ð�,�0, sÞ � E0ð�,�0, s

0ÞÞ½ � ð2Þ

where �¼ 1/kBT and kB is the Boltzmann. This

constraint arises from our basic assumption that the

underlying free energy landscape of the protein is a

θ

Motor Conformation,θ 
θ0

R
at

e 
of

 A
D

P
 R

el
ea

se

k(θ0)

Figure 3. Enzymatic activity of the motor domain is conformation dependent. Here, ADP release rate should increase as the
linker domain rotates past the preferred conformation (plot at right). Kinetics measurements using purified proteins measure
the reaction rate at conformational equilibrium: ks!s0 (�0). Conformation of the molecule can be changed by applying a force to
the linker domain, and experiments have measured some reaction rate functions.

z

Movement Direction

Motor Domain

Light-chains

Load Force, F

Side View Front View

Actin Track

R
Rθ1

θ2

φ
1

φ
2

Movement Direction

Motor Domain

Light-chains

Load Force, F

Actin Track

θ2

Figure 2. The total free energy landscape of the motor dimer
can be obtained using a simple rod-like model for the linker
domains. When both domains are bound to the track, the
linker domain is uniquely defined by specifying the motor
domain conformations (�1, �1, �2, �2), and the distance
between bound sites, z, and the force F applied at position R.
When only one of the motors is bound, only one of the
linkers bears the force. The free motor can bind to any
available site, but the binding probability depends on the
energy difference before and after binding.
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continuous single valued function. Together with the
monomer energies of Equation (1), the transition rate
functions therefore specifies a free energy landscape of
the form shown in Figure 1(b). In some cases,
transition rate functions have been measured for
myosin monomers by applying forces to the molecule
[67,68]. Using theoretical modelling, it is possible to
relate the mechanical properties of the monomer and
the conformationally dependent transition rate func-
tions to single molecule data (see below).

2.4. Induced fit model of enzymatic dynamics

Note that our specification of the monomer energy in
Equation (1) has a connection with the induced-fit
picture of enzyme allostery. Upon binding of ATP and
release of hydrolysis products, the enzyme changes
shape. This is reflected in the fact that �0 is a function
of s. For each s, we postulate that there is an unique
low energy conformation, (�0, �0). Within this picture,
‘power-stroke’ of the motor occurs after the nucleotide
has changed in the binding pocket, and the protein
relaxes to a new lower energy conformation. If there
are forces and torques on the motor, then these forces
will oppose the conformational relaxation (power-
stroke), and when force balance is achieved, a new
conformational equilibrium different from �0 will
occur. Thus, a consequence of forces on the motor is
that it alters the conformation and therefore the
transition rate ks!s0(�). This result will explain
synchrony between hydrolysis sites and lead to coor-
dinated motion of the motor dimer (see next section).

2.5. Simulations of the energy landscape

Finally, E0(�, �, s) can be obtained from molecular
dynamics simulations by computing the free energy of
the molecule as a function of its conformation.
Equation (1) postulates that the motor behaves as
torsional springs parameterized by spring constants �1
and �2, this postulate can be checked by more careful
simulations of the enzyme system to estimate the spring
constants.

3. Motor dimers and the elasticity of protein domains

Processive motors are typically dimers where two
motor domains are connected by a linker domain
[54]. For myosin dimers such as myosin V, VI and X,
the motor domains undergo a similar conformational
transition, but the linker domains have different
structure and composition [31,32]. A fundamental
question is: what is the connection between linker

domain structure and the observed processive motion?
The developed model should explain not only the
processive behaviour, but also the response of the
motor to applied forces in single molecule experiments.

3.1. Energy of motor dimer

Within our energy landscape framework, the total
energy of the actin-bound dimer can be expressed as

E ¼ E0ð�1,�1, s1Þ þ E0ð�2,�2, s2Þ þ ELð�1, �2,�1,�2, z,FÞ,

ð3Þ

where (�1, �1, �2, �2) are the conformations of the
motor domains 1 and 2; EL is the free energy of the
linker domain which can depend on the conformations
of the motor domains and the externally applied
force F. In single molecule experiments, forces from
optical traps are typically applied to the trapped bead
that is tethered to the linker domain (see Figure 1).
Finally, when both motor domains are bound to actin,
z is the distance between the actin binding sites. We
assume that the conformation of the linker domain is
in rapid thermal equilibrium, i.e. given the conforma-
tion of the motor domains (�1, �2, �1, �2), the linker
domain will reach an equilibrium conformation instan-
taneously. The equilibrium conformation of the linker
domain and its free energy will be computed using a
mechanical model below.

3.2. Force transmission between motor domains

In our specification of the linker domain free energy,
we have assumed that the linker conformation is not
affected by chemical state of the motor domain. The
linker domain is a passive mechanical element.
However, the linker domain is an elastic element, and
can transmit forces between the motor domains. If one
of the motor domains makes a conformational change
by changing s (and therefore �0(s)), E0 of that domain
changes. The new configuration of the dimer is
obtained by force balance between the motor domains
and the linker domain, which can be computed by
minimizing the total energy:

@E

@�i

����
��
i
,��

i

¼ 0,
@E

@�i

����
��
i
,��

i

¼ 0, ð4Þ

where ð��1, �
�
2,�
�
1,�
�
2Þ are conformations of the motor

domain that minimizes the total motor energy. These
conformations are clearly different from the monomer
preferred conformations (�0, �0) due to the presence of
the linker domain energy EL. Note that Equation (4)
assumes that the conformation of the linker domain
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relaxes to mechanical equilibrium faster than chemical
transitions in the motors. We expect this to be the case
when ATP hydrolysis rates are relatively slow (41 ms).
This assumption should be checked when these time
scales are comparable.

3.3. Rod-like model of the linker domain

The conformational free energy of the linker domain,
EL, is not known, but simple models may be able to
capture the essential physics. For myosin V, the link
domain is a single long �-helix decorated by calmod-
ulins [8]. The domain is roughly 30 nm in length, and is
structurally similar to a rod. Thus, we postulate that
the conformational energy can be modelled by consid-
ering bending and twisting motions of the linker
domain. The mechanical energy of a continuous rod
within a linear elastic model is

EL ¼ kBT

Z L

0

1

2

X3
i¼1

lpi!iðsÞ
2 dsþ kBT

Z L

0

1

2

X3
i¼1

lpi!
0
iðsÞ

2 ds

� F �R, ð5Þ

where R is the position at the middle of the linker
domain where an external force F such as from an
optical trap, is applied. !i (s) and !

0
iðsÞ are the bending

and twist densities of the two linker domain segments,
which are in units of radians per unit length. L is the
length of the linker. lp and l0p are the bending and twist
persistence lengths of the rod, respectively. These
quantities are related to the bending and twisting
modulus, which are the effective mechanical constants
that describe the energies associated with mechanical
deformations. For isotropic and homogeneous elastic
bodies, bending and twisting moduli are further related
to the Young’s modulus of the material. Here, we resist
the temptation of using a Young’s modulus to describe
protein domains, which are neither homogeneous or
isotropic.

The configuration of the rod cannot be solved
unless we specify the forces at the boundaries (ends) of
the rod. These boundary conditions are described by
variables (�1, �1) and (�2, �2), and the positions of the
motor domains on F-actin. (The structure of F-actin is
known [69], and the separation distance z, is sufficient
to specify the positions of the bound domains.) Thus,
within the linear elastic model, given boundary condi-
tions and the external force, it is possible to solve for
the mechanical equilibrium rod configuration by min-
imizing the elastic energy of Equation (5). Techniques
for solving the configuration are found in standard
mechanics textbooks. It is clear that there is a unique
rod configuration for each set of boundary conditions

and external force. The elastic energy of the mechanical
equilibrium configuration is used for EL (�1, �2, �1, �2,
z, F) in Equation (3).

A case of importance is when only one of motor
domain is bound to actin; the other domain is
unbound. Here, the external force acts on the bound
motor domain only and bends its linker domain. The
other domain is presumably free to diffuse. Therefore,
the total energy of the linker domains involves only the
bound linker:

E0L ¼ kBT

Z L

0

1

2

X3
i¼1

lpi!iðsÞ
2 ds� F � R: ð6Þ

The rod model requires stiffness parameters lp and
l0p, which are ultimately results of linker domain
structure. In wild-type myosin V, the linker domain
is a single �-helix decorated by six calmodulin subunits.
In myosin VI, the structure of the linker domain is still
being debated [70,71], but it is clear that at least regions
of the linker domain is disordered and unfolding. Thus,
we expect the myosin V linker domain to be stiffer,
with larger lp and l0p values.

Note that the rod-like behaviour of the linker
domain is an emergent property of any structure where
one of its dimensions is much larger than the other
two. Rod models have been used for polymers, DNA,
and even small organic molecules [72]. The mechanical
behaviour of a rod not only depends on its stiffness,
but also on its overall length, L. Therefore, even
though Equation (6) is linear in !i, the overall motor
responds nonlinearly to the applied force F.

4. Origin of motor processivity

Having specified the total energy of the motor dimer,
and the transition rate functions for ATP hydrolysis
and actin binding, it is possible to mathematically solve
for the motor processive motion using standard
methods of stochastic dynamics. Before doing so, it is
useful to examine the physical factors leading to
coordinated stepping of motor dimers. Two crucial
steps are needed for processivity: (1) preferential
detachment of the trailing motor domain, and (2)
binding of the free motor domain in the forward
direction. The overall mechanics of the motor dimer
regulate both of these steps.

When both motor domains are bound to actin, the
most common configuration is where both motor
catalytic sites are occupied by ADP [73,74]. This is
because ADP release is kinetically the slowest step in
the hydrolysis cycle [65,68]. Since the catalytic site
occupancy determines the preferred conformation of
the motor domain [58–61], (�0, �0) in Equation (1),
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both light-chain domains would like to point in the
same direction. However, because the light-chain
domains are physically connected, it implies that the
mechanically favourable configuration is obtained
from Equation (4) by minimizing the total dimer
energy. The mechanical equilibrium configurations,
ð��1,�

�
1, �
�
2,�
�
2Þ, are different from the preferred config-

uration, and ��1 6¼ �
�
2, �
�
1 6¼ �

�
2. Since all kinetic steps are

described by rate functions, ADP release rate in
the leading motor domain must be different from the
trailing motor domain. To achieve processivity,
the trailing motor domain, most of the time, must
release ADP first.

Once ADP is released from the trailing motor
domain, ATP binding is fast and the trailing head
detaches quickly from actin [65]. To make a forward
step, the unbound motor domain must preferentially
bind to the available actin site in front of the bound
motor domain. The relative probability of binding to
the different binding sites are determined again by the
total energy of the motor dimer. We assume that the
joint between the light-chain domains is free to rotate,
then the unbound monomer can diffusively sample the
30 or so available actin binding sites around the bound
motor. The spatial positions of the available binding
sites are uniquely determined by z. The rates of binding
to the available sites, however, are determined by the
energy difference before and after binding:

DEðzÞ ¼ ½E0ð�1,�1,s1ÞþE0ð�2,�2,s2ÞþELð�1,�1,�2,�2,F,zÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
energy after binding

�½E0ð�1,�1,s1ÞþE0ð�2,�2,s
0
2ÞþE0Lð�1,�1,FÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

energy before binding

,

ð7Þ

where s1 is typically A.M.D and s1 is usually M.DP.
This energy difference is also the free energy change for
the binding reaction, and we see that the elasticity of
the light-chains affect the binding energy; depending
on z, binding to some sites are favourable (DE5 0)
and other sites are unfavourable (DE4 0). External
forces can also affect this binding energy change.

The rate of binding to the available sites will
depend on the energy of the transition state of the
reaction. A precise understanding of the binding
reaction transition state is presently unavailable.
However, a phenomenological approach is to write
the binding rate as a function of DE(z):

ks2!s0
2
ðzÞ ¼ k0s2!s0

2
e��DEðzÞ ð8Þ

where � is a phenomenological parameter. � is a
measure of how close the transition state is, along the
reaction coordinate, to the product and presently has
to be guessed. Several typical DE(z) are shown in

Figure 2 for myosin V and myosin VI. We see that the
binding rate is highest to the þ36 nm binding site for
myosin V. The �36 nm site is also favourable, however
it is higher in energy when compared to the þ36 nm
site. This energy difference controls the relative prob-
ability of the forward and backward step. Interestingly,
when load forces are applied, DE(�36 nm) becomes
similar to DE(þ36 nm). The force at which these two
energies become equal is approximately the stall force,
where the probability of taking a forward step becomes
equal to the probability of taking a backward step.

After analysing the two critical steps that lead to
processivity, trailing motor domain detachment and
binding of the free motor domain, it is clear that the
elasticity of the light-chain domains regulate the
processive movement. Changing the light-chain
domain stiffness will affect the mechanical equilibrium
conformation of the motor domains through Equation
(4) and the rate of binding to actin through Equations
(7) and (8). A hand-over-hand mechanism is directly
the result of mechanical properties of protein domains.
Thus, the emergent properties of the molecular struc-
ture ultimately controls motor protein behaviour.
Quantitative details of the stepping behaviour will
depend on quantitative values of elastic constants and
geometrical parameters such as the size of the domains.
These effects can be investigated from computational
studies outlined in the next section.

5. Stochastic modelling approaches based on the

energy landscape framework

Starting from the total free energy of the motor dimer
in Equation (3), it is possible to completely solve the
dynamics of the system using standard approaches from
stochastic dynamics [75,76]. Two essentially equivalent
approaches are the Fokker–Planck equation where one
solves for a time-dependent probability distribution,
and the Langevin equation where one solves for a
stochastic trajectory. We denote the mechanical vari-
ables by a vector x, e.g. x¼ (�1, �1, �2, �2) for dimeric
myosin motors. We denote the combined chemical state
of the dimer as �¼ (s1, s2). In the high friction limit
where inertia is negligible and momenta are in thermal
equilibrium, we may use the Smoluchowski limit of the
Fokker–Planck equation to describe probability distri-
bution of the motor configuration P�(x, t):

@P�ðx,tÞ

@t
¼rx � DrxP�ðx,tÞþP�ðx, tÞrxEð�,xÞ½ �

�
X
�0

k�!�0 ðxÞP�ðx, tÞþ
X
�0

k�0!�ðxÞP�0 ðx,tÞ,

ð9Þ
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where the first line is the ordinary Smoluchowski
equation describing probability flow on an energy
landscape with fixed � and D is the diffusion tensor.
E(x,�) is the same free energy appearing in
Equation (3). The second line describes probability
flow between different �’s with rate functions k�!�0

(x). This equation is equivalent to the high friction
limit of the Langevin equation, which describes
stochastic trajectories as:

	
@x

@t
¼ �rxEðx, �ðtÞÞ þ RðtÞ, ð10Þ

where �(t) is a stochastic trajectory that jumps between
different states and 	 is the friction tensor: 	¼ kBTD

�1;
R(t) is the random force vector. Single molecule exper-
iments have collected both probability distribution data
as well as trajectory data [33,47,77,78]. Therefore, both
of these approaches are useful for direct comparisons
with experiments.

5.1. Ratchets and powerstrokes

A number of limits can be examined based on the
energy landscape approach. For instance, concepts
such as the Brownian Ratchet have been invoked to
explain motor activity [12,14]. In the context of an
energy landscape, a ratchet is a sudden drop in free
energy that is essentially irreversible (Figure 4). Most
of the time, the system is undergoing diffusive dynam-
ics on a flat free energy landscape until encountering
the free energy drop. On the other hand, a powerstroke
is simply a more gradual lowering of a free energy.
In the limit of a linear decline in free energy, a constant
force is obtained from the free energy change. For
biological motors, the shape of the free energy land-
scape is determined by the motor structure and the
enzymatic activity. Both ratchets and power-stroke-
like landscapes are possible.

5.2. Markovian models

Further simplifications based on the energy landscape
is possible by considering only a set of interested
regions on the landscape [21,22]. These regions can be
called ‘Markov states’, and the transition probability
per unit time between these Markov states are Markov
transition probabilities. The Markov transition prob-
abilities can be obtained from a more detailed analysis
of probability fluxes between Markov states using the
Fokker–Planck equation, similar to the analysis
Kramers carried out for the reaction over a barrier.
Thus, a Markovian description of the motor dynamics
is possible starting from the energy landscape picture,

provided a set of important states are identified.
Alternatively, without identifying these Markov
states, symmetries of the energy landscape and a
minimum number of states can be assumed to explain
single molecule data. This approach asks what is the
simplest model that can capture the observed phenom-
ena without having to provide more detail of the
characters of the assumed states.

The Markov approach can be extended further and
thought of as a discrete solution to the Smoluchowski
equation in Equation (9). The energy landscape con-
siders a set of continuous mechanical variables, and a
set of discrete chemical variables. In practical calcula-
tions, the continuous mechanical variables are dis-
cretized. Since the definition of a state is flexible in a
Markov model, a state � can be defined by a set of
mechanical and chemical variables: �¼ (�1, i, �1,j, �2,k,
�2,l, s1, s2) where i, j, k, l are the indices in the
discretized mechanical variables. If the Markov jump is
a change in a mechanical variable, the transition rate
between states, k�!� can be determined by solving the
Fokker–Planck equation in the local region where the
transition takes place. If the Markov jump is a change
in the chemical variable (s1, s2), the transition rate is
completely determined by chemical rate functions
described in Section 2. Details of these procedures
are summarized in other publications [16,79].

Thus, starting from the energy landscape picture, a
continuum of models can arise, depending on the level

Ratchet

>> k TB

Power-Stroke

Markov
States

Figure 4. The energy landscape is a general picture that
includes concepts such as ratchets and power-strokes. A
ratchet-like region in the energy landscape is a steep drop in
free energy (much greater than kBT). Once motion goes over
the drop, the motion is rectified. A power-stroke is a more
graduate change in free energy. The slope of the free energy
change is the power-stroke force. Regions on the energy
landscape may be of special interest (red dots). These regions
are Markov states. Jumps between these Markov states,
which is equivalent to stochastic dynamics on the energy
landscape, can be described by Markov models.
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of simplifications and assumptions. To explain
experimental data, and predict new experiments, how-
ever, the energy landscape picture provides the most
fundamental description. It makes connections with
the protein structure, and asks which emergent prop-
erties of the structure contribute to motor motion.
In order to develop an energy landscape model, coarse-
grained descriptions of protein structures are neces-
sary. In Appendix 1, a coarse-graining approach based
on mechanical models of protein secondary structures
is explained.

6. Results for myosin V, myosin VI, isoforms

and mutants

The modelling framework described here has been
applied to myosin V and VI [16,17], which are two
prototypical processive motors on actin filaments.
Atomic structures of myosin V and VI monomers
have been solved [58–62]. Therefore, reasonable
parameters such as (�0(s), �0(s)) can be obtained from
the structures. The chemical transition rate functions
have not been measured, but kinetic measurements
from purified motor monomers are available [65]. The
measured rate constants represent the rate function
evaluated at the preferred conformation: ks!s0(�0(s),
�0(s)). Moreover, the influence of applied forces on the
rates for motor monomers have been measured as well.
Therefore, there is increasing experimental input to
constrain the model.

The mechanical stiffness parameters for the light-
chain domains, lpi , have not been measured. Given the
three-dimensional geometry of the actin filament, these
mechanical parameters dictate the conformation and
energy of the motor on the F-actin track under external
load forces (Figure 5), which directly determine the
force–velocity relationship and the step-size distribu-
tions. Hence, comparing model predictions with exper-
imental observations through parameter study
provides information about the mechanical properties
of motor proteins, which can be validated in other
experiments. For instance, we simulated the processive
motion of myosin V. Force–velocity relationships
computed from the trajectories compare favourably
with experimental results (Figure 6): myosin V pro-
cesses along F-actin at �500 nm s�1 velocity against
external load force jFj up to 1 pN, and then slows
down rapidly with increasing force for jFj4 1 pN;
myosin V stalls at around jFj ¼ 2.7 pN.

As observed in single molecule experiments, the
computed motor trajectories based on stochastic
dynamics simulations of Equation (9) show distinct
steps. However, the stepping motion is stochastic, and

myosin V has a broad distribution of step sizes with an
average value at 36 nm (Figure 6). The step size
distribution changes with the applied load force, but
the average step size is always 30–36 nm. A strength of
modelling that the stepping trajectories have essentially
infinite spatial and temporal resolution. For example,
the model easily captures the �10 nm sub-steps that
have only been recently observed with improved
instruments [39,40]. The model also predicts the
processes that give rise to these substeps.

The same theoretical framework with a different set
of parameters were applied to myosin VI [17]. To
properly describe the conformational energy of the
motor molecule, we decomposed the linker domain of
the myosin VI dimer into three parts: two short elastic
rods that extend from the motor domains and one
flexible linker that connects the two rods. This
description can be still written as Equation (5), but
now, lpi is a function of s, representing the non-
homogeneous elasticity along the linker extension. In
the limit of lpi � L, the middle flexible linker reduces
to a Worm-Like-Chain (WLC) model whose extension
property has been studied intensively [80–82]. It can be
shown that the WLC model behaves like an entropic
spring.

Different mechanical properties of the myosin VI
linker give rise to different conformation energies
during processive stepping along actin filaments
(Figure 5). For forward stepping, the lowest binding
energy change for myosin VI occurs at around 30 nm
interhead distance. For backward stepping, �10 nm
interhead distance is the lowest binding energy change.
The computed trajectories using the stochastic simula-
tion shows a broad step-size distribution for myosin VI
processivity with average forward step-size 30 nm and
backward step-size �10 nm. Both are consistent with
experiments (Figure 6).

Since the myosin VI linker is flexible, the Brownian
search process prior to binding to the actin track can
be time consuming and can not be ignored. We used
the conformation energy (Figure 5) to compute the
mean-first-passage-time (MFPT) of the free motor
head searching for the proper binding site [33]. Adding
this searching time to the kinetic transition time when
both heads bound, we explained the observed dwell-
time between successive steps under different load
forces at different ATP levels (Figure 6).

To further examine the role of the elastic linker
domains in processive myosins, we studied the myosin
X isoform and myosin V mutants with truncated linker
domains. Again, the same modelling framework
applies, but the length of the linker domain is shorter.
Results show that, given the same linker stiffness, the
linker length controls the conformation energy of
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myosin motors binding with F-actin. Shorter linker
domain leads to higher DE and more significant
barriers for stepping, reducing the duty ratio of the
myosin dimer. Interestingly, the mechanical equilib-
rium conformation for the bound dimer, ð��1,�

�
1, �
�
2,�
�
2Þ,

depends on the linker length. Since the conformation
ð��1,�

�
1, �
�
2,�
�
2Þ directly affects the conformation of the

ATP-catalytic pocket, changing ð��1,�
�
1, �
�
2,�
�
2Þ

could potentially accelerate or decelerate ATP
hydrolysis. Hence, truncating linker domain can

counter-intuitively increase the velocity of the motor.
Understanding the dependence of rate constants on
conformation can explain this puzzling observation in
myosin V mutant experiments [8].

The agreement between modelling and experiments
suggests that decomposing motor molecules into mul-
tiple mechanical components and combining mechan-
ics with biochemical kinetics is a reasonable and
effective approach for studying operating the mecha-
nism of processive motor proteins. The modelling
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Figure 5. Mechanical model estimates for the energy difference before and after motor binding to the actin track, DE(z) in
Equation (7). (a) Myosin V. (b) Myosin VI. Two load forces, F¼ 0 pN (blue) and F¼ 2 pN (red) are shown.
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Figure 6. Stepping property of myosin V and myosin VI molecules. Geometries of myosin V dimer at step size of (a) 36 nm and
(b) 18 nm. Part (a) shows that the lever-arms of myosin V are moderately bent, which leads to low mechanical energy EL and
defines a favourable stepping geometry. In (b), the lever-arms are heavily bent, which results in high EL and the stepping at this
distance is unfavourable and unlikely to happen. (c) Force–velocity relation of myosin V. Symbols are experimental
measurements of Uemura et al. [39] and the solid line is the simulation result. Sample trajectories are show in the insets for F¼ 0
pN (upper left) and F¼ 1.8 pN (lower right). Forward (blue) and backward (red) step size distributions are shown in teh insets
for F¼ 0 pN (lower left) and F¼ 1.8 pN (upper right). (d) The average step size for the forward and backward steps of myosin
VI. The experimental results (symbols) are taken from Altman et al. [33]. (e) The dwell time before taking a step as a function of
the load force for [ATP]¼ 2 mM, [ADP]¼ 0 mM (solid line and circles); [ATP]¼ 1.5mM, [ADP]¼ 1 mM (dashed line and
triangles); [ATP]¼ 100mM, [ADP]¼ 0 mM (dotted line and squares). The symbols are measurements from Altman et al. [33].
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framework not only explains the single molecule
experiments but also provides important estimates
that are experimentally inaccessible, such as the
mechanical properties of the motor domains and the
conformation dependence of kinetic rate constants.
Our theory reveals that, in general, processive motor
proteins utilize their linker domains to transmit forces
between monomers (Figure 5), and synchronize the
stepping motion of the motor dimer (Figure 6).

7. Motors interacting with cytoskeletal networks

In eukaryotic cells, myosin motors operate within the
three-dimensional network of cross-linked F-actin
filaments. To understand how transport occurs in the
network, and how the motor switches between tracks,
we use our model to examine myosin motor stepping
on multiple F-actin polymers with varying positions
and orientations. Because our theoretical framework is
based on a three-dimensional mechanical model, and
the motor can at most simultaneously bind to two actin
binding sites, investigating how motors interact with
two filaments is sufficient to cover all possibilities.
A number of additional features needs to be consid-
ered: (1) increased number of available binding sites
along different F-actin tracks, (2) three-dimensional
geometry of available actin sites and the geometry of
the actin filament at cross-linked junctions, and (3)
exclusive volume effect preventing the access of bind-
ing sites that are spatially close. A detailed mathemat-
ical description of F-actin geometry at cross-linked
junctions is presented in Appendix 2.

For motors stepping on a single actin track, the
binding site positions are uniquely determined by the
distance z between two binding sites, EL is only a
function of (�1,�2, �1, �2, z, F) as shown in Equation (3).
In contrast, for motors at the junction of two intersect-
ing tracks,EL in Equation (3) now depends on (�1, �2, �1,
�2, p1, p2, o1, o2,F), where (p1, p2) are the coordinates of a
pair of available binding sites and (o1, o2) are their
orientations. The number of possible combinations of
(p1, p2, o1, o2, F) is substantial. We explicitly discuss
myosin V stepping through a junction connected by the
actin branching protein Arp2/3. We will also discuss
myosin X processivity along parallel actin filaments
cross-linked by actin bundling protein fascin.
Calculations are performed without external load
force. All geometrical parameters for Arp2/3 and
fascin are summarized in Appendix 2.

Arp2/3 is a protein found at the cellular leading
edge that binds to the existing (mother) F-actin and
initiates a second (daughter) filament at a 70� angle
(Figure 7) [83]. Recent structural studies have provided

detailed geometrical information about the Arp2/3
junction [84–86]. We use this information to calculate
(p1, p2, o1, o2) for all possible pairs of actin binding sites
along the mother and daughter filaments. The energy
of the motor, Ei,j (i and j are the indices of the available
binding sites), is evaluated using Equations (3) – (4)
with constraints provided by the branch geometry.
Figure 7 shows several sample motor geometries based
on the evaluated motor energy. When one motor
domain is bound to a binding site (i) on the mother
filament, the probability for the free motor domain to
step to the daughter filament, i.e. switching, can be
computed by:

PsðiÞ ¼

P
j2daughter e

�Ei,jP
j2daughter e

�Ei,j þ
P

j2mother e
�Ei,j

: ð11Þ

Summing over i gives the total switching probability of
a motor dimer near the branch. Our model predicts
�24% switching probability, which is in excellent
accord with experiments [44].

For myosin X stepping along parallel actin bundles
cross-linked by fascin [45,46], we use the same meth-
odology to compute motor dimer energy as a function
of pairs of binding sites (Figure 7). In vitro single
molecule experiments have shown that myosin X has
limited processivity along single actin filaments,
but has a much improved processivity along fascin-
cross-linked actin bundles [46]. Our modelling demon-
strates that this is due to the shorter linker domains
(15 nm instead of 30 nm): stepping along the same
track requires significant bending in the linker and is
energetically unfavourable. A more favourable sce-
nario is to bind the motor domains to two separate
actin filaments. Fascin bundles parallel actin filaments
and positions the filaments sufficiently close so that
myosin X can easily step along two neighbouring
tracks [87].

With sufficient information about the actin net-
work geometry, our model can explicitly evaluate the
energies of motor dimer configurations. When a
myosin motor dimer is walking in a cytoskeleton
network, the energies of the motor configurations
determine the relative probabilities of the available
binding sites. The linker domains of the motor dimer
again play a regulatory role in determining motor
processive dynamics. This raises the possibility of
artificially designing motors that behave in different
ways in the cell.

8. Motor assemblies, tug of war, and

muscle contraction

One of the primary functions of myosin motors is to
transport cargo inside cells [31]. These cargos are
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hundreds of nanometres in size; a single cargo can

associate with multiple motors, including microtubule

motors, to form a large transport assembly. The

transport assembly is also likely to interact with

multiple cytoskeletal tracks. When the cargo is trans-

ported, all the motors within the assembly undergo

their own stepping dynamics and the force generated

by each motor is felt by all other motors. Thus, motors

within the assembly ‘communicate’ with each other. If

there are motors travelling towards the opposite ends

of the track, such as myosin V and myosin VI, the

cargo is transported in a ‘tug of war’ fashion [51].

A similar approach could also describe recent interesting

results in assemblies of kinesin motors [88]. Even though

the in vivo process is complex, our theoretical frame-

work is still applicable for describing motors in the

cargo transport assembly. The framework also

provides explanations for interesting collective phe-

nomena, including bistability and hysteresis that are

observed in motor assemblies [89].
In addition to the motor forces needed for cargo

transport, cells also require larger nano-Newton forces

for important functions such as cell division and

muscle contraction. To this end, pico-Newton force

generators, conventional myosin II molecules, form

highly ordered assemblies and operate as a single force

generating unit. One of the most important force

generating units is the sarcomere in the skeletal muscle

[90]. Each sarcomere contains about 300 myosin II

molecules that bundle together to form the thick

filament. The thick filament is polarized, and two

opposing units of 150 myosin II motors form a

contractile unit. Multiple F-actin filaments (thin fila-

ments) are around the thick filament to interact

(b)

(d)

Favorable Switching 
   to Arp2/3 branch 

Unfavorable Switching 
   to Arp2/3 branch 

(c)      Unfavorable Stepping 
between Fascin crosslinked 
              actin bundle 

       Favorable Stepping 
between Fascin crosslinked 
             actin bundle 

(a)

Figure 7. Stepping of dimeric myosin motors on cross-linked F-actin filaments. Parts (a) and (b) show three-dimensional views
of the unfavourable and favourable stepping geometries of myosin V at the junction of an arp2/3 branch, respectively. Parts (c)
and (d) show three-dimensional views of the unfavourable and favourable stepping geometries of myosin X at a fascin F-actin
bundle, respectively. The darker actin monomers indicate the barbed-ends of individual F-actin filaments.
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with myosin II. When a myosin II binds to a thin
filament (forming an active cross-bridge) and performs
a power-stroke, the movement slides the thin filament
and causes shortening (contraction) of the sarcomere
unit [91–93] (Figure 8).

Even though myosin II is not processive, and unlike
the processive motors that use both heads to interact
with actin filaments, myosin II uses a single head to
bind F-actin and generate forces, the modelling
framework for a group of myosins is essentially the
same. We successfully modelled the mechanochemistry
of the myosin II motor and the collective behaviour of
sarcomere contraction. It is possible to incorporate the
elasticity of the linker domain in the model [57]. When
multiple myosin II motors operate on the same thin
filament, the hydrolysis and power-stroke activities are
coupled due to the geometrical constraint from the
rigid thin filament. The motors are also arranged in
opposite directions in the two halves of the sarcomere,
leading to a natural tug of war. Thus, when the load
force is high, oscillations, hysteresis and other dynamic
instabilities naturally arise [89,94].

Within our framework, for a sarcomere with N
working myosin II heads (cross-bridges), the total
energy of the system can be written as

E ¼
XN
i¼1

E0ð�i,�i, siÞ þ ELð�i,�iÞ, ð12Þ

where E0 is motor domain energy. EL is the confor-
mation energy of the linker domain. If F is the load

force applied in the direction of the thin filament, force

balance of the entire system leads to

@E

@x
¼
XN
i¼1

@E0ð�i,�i, siÞ

@x
þ
@ELð�i,�iÞ

@x
¼ F, ð13Þ

where x is the displacement along the axis of the thick

filament, which is a function of the motor conforma-

tion x(�i, �i). Equations (12) and (13) are not sufficient

to describe sarcomere contraction. However, when the

chemical transitions are taken into account [Equation

(9)], for given initial configurations (�i, �i) and applied

force F, hydrolysis and force generation activities of all

myosin II motors can be solved. With this approach,

isometric, isotonic and jump experiments on muscle

can be analysed in detail using our model. Observed

collective behaviour of sarcomere contraction is also

contained in the model solution. Questions such as the

effect of light-chain mechanical properties on contrac-

tion dynamics can be answered as well.
Simulation predictions on the maximum contrac-

tion velocity (�3500 nm s�1 under no load) and the

maximum load force (�2 pN per motor at near-zero

velocity) are in quantitative agreement with measure-

ments [95]. The load–velocity and efficiency–velocity

relationships both agree well with experimental results

as well [95] (Figure 8). Our theory predicted that with

increasing load force, more and more myosin II motors

interact with the thin filament to generate a balancing

force (Figure 8).

Figure 8. Contraction and force generation of skeleton muscle. (a) Illustration of skeleton muscle structure. More than a
hundred myosin II motors bundle to form the thick-filament that collectively interact with the thin filaments (F-actin) to generate
force and motion. The mechanochemical dynamics of individual myosin II motors can be described using the presented model.
(b) Relation of generated force and the contraction velocity for muscles that are made from different numbers of myosin II
motors. The dots are experimental data for 138 motors.
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For a small motor assembly performing cargo

transport within a cytoskeleton network, the geometry

of the available binding sites are likely to be complex.

Nevertheless, the total motor energy is still in the form

of Equation (12), and the dynamics of the motor

assembly can be described using the same approach as
for muscle contraction.

9. Conclusions

The modelling framework reviewed in this article is a

general method to relate the three-dimensional molec-

ular structure with precision single molecule data. The
modelling framework is applicable to single motors, to

dimers and motor assemblies. By carrying out quan-

titative studies, a number of general concepts emerge.

(1) Proteins are mechanical structures. Geometry and

emergent properties of protein domains are important

for understanding large scale conformational changes.
(2) Enzymatic activity of proteins is related to protein

conformation and affected by mechanical forces.

A general concept is the enzymatic rate function,

which relates the rate of enzymatic reaction with the

protein conformation. Applied forces change the
protein conformation, and in turn affect reaction

rates. (3) By examining the three-dimensional struc-

ture, it is possible to use models to describe the overall

energy landscape of the protein assembly. Features of

the energy landscape can be used to develop concepts

such as ratchets and power-strokes. Stochastic meth-
ods combined with the energy landscape are able to

describe experimental data. We emphasized the general

understanding of mechanical performance of molecu-

lar motors and their assembly. Using myosin motors as

a model system, we showed that the motor function is
intimately related to the geometry and mechanical

properties of the linker domain. Even though the linker

domain does not bind nucleotides, it serves an impor-

tant role in regulating motor function and the observed

stepping behaviour.
To perform computations, the model requires a

number of parameters. These parameters include the

mechanical constants of the protein domains and the

functional forms of the rate functions. Many of these

parameters are not known, therefore systematic studies

are required. In earlier work, unknown parameters are

fitted to experimental data. By manipulating these
parameters through mutations and other engineering

approaches, it is possible to design molecular motors

that function in desired ways. By understanding how

these parameters relate to molecular structure, more

precise control of motor systems is possible.

Parameters of the coarse-grained model can also be
obtained from molecular dynamics studies and atom-
istic simulations [96,97]. Indeed, the proposed frame-
work can be naturally connected with MD results as
described in Appendix 1. Furthermore, MD allows
detailed studies of mutations and functional roles of
critical residues in the motor, which could be impor-
tant in some cases.

The modelling framework reviewed here is not
limited to myosin motors. For other types of processive
microtubule motors such as kinesin and dynein, this
approach is also applicable. The necessary inputs are
single monomer motor energies in Equation (1) and the
linker domain energies Equation (5), and the enzymatic
rate functions. For kinesin and dynein, these confor-
mational energies are likely to be more complex.
Accurate descriptions of these energies will require a
more detailed understanding of the molecular struc-
ture. For dynein, the number of domains and ATP
hydrolysis sites is also significantly larger [98], pre-
sumably leading to more complex regulation of motor
stepping behaviour. Therefore, more information is
needed for the kinetics of the motor system as well.
Nevertheless, the essential elements that lead to
processivity described in Section 4 should be the
same. A unified description of motor systems ranging
from single molecules to assemblies in cells appears to
be possible.
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Appendix 1. Mechanical models of protein domains

The question we would like to address in this appendix is
how we can arrive at mechanical models such as
Equations (1) and (5) starting from the molecular structure.
The connection is found through statistical field theory
where the geometrical shape of the molecule can be thought
of as a function of atomic coordinates: u(q1, q2, . . . , qn),
where qi are the positions of the ith atom. The definition of
this function is not unique. But since we are interested in the
emergent properties of the molecular structure, the results
should not depend on the details of this functional relation-
ship. Having defined the geometrical shape of the molecule,
the free energy, E, as a function of change in shape is then
defined as

exp½�EðuÞ=kBT�/

Z
dq1 ...dqn
ðu�ûðq1 ...qnÞÞexp½�Vðq1 ...qnÞ=kBT�,

ð14Þ

where V is the atomic interaction potential between atoms.
The assumption made here is that degrees of freedom
orthogonal to u are in rapid thermal equilibrium.

Geometrical variables such as u represent the kinematics
of protein conformational change. To obtain dynamics, we
must know about E(u). One way to obtain E is from direct
MD simulations using Equation (14). This was performed for
�-helices and �-sheets to obtain the elastic energy and
mechanical constants for bending and twisting these struc-
tures [99,100]. It was found that �-helices behave quite
similar to an elastic rod, and �-sheets can be described as an
elastic surface. In these studies, proteins are assumed to
remain in a folded state mechanical and conformational
changes are variations in structure in the folded state. By
viewing protein secondary structures as mechanical elements,
properties of tertiary structures such as coiled coils and
�-helical bundles can be explained as well [101].

In general, a functional form for E is assumed (the
constitutive law). These choices are modelling assumptions
that must be tested in experiments. The modelling
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assumptions also cannot violate basic requirements such as
coordinate frame invariances. Thus, simulations, experiments
and some intuition can be used to obtain information
about E.

Appendix 2. Mathematical description of actin

filament geometry

In this appendix, we provide the general mathematical
description of the binding sites on a pair of cross-linked F-
actin filaments in the three-dimensional space. The more
complicated situation with three or more F-actin filaments
can be extended from this presented description which in turn
provides a framework to describe the ‘track’-geometry in the
in vivo F-actin cortex.

Geometrically, F-actin is a 7 nm thick filament (radius
r¼ 3.5 nm) made from actin monomers and has a right-
handed double-stranded helical structure. Each strand is a
helix that every 13 monomers (monomer size 5.5 nm) form a
full turn and the pitch is 71.5 nm. Therefore, one monomer
rotates 2 � /13 (the twisting angle) around the filament centre
line with respect to the previous monomer. From a pure
mathematical point of view, however, we simplify this
double-stranded structure to a right-handed single helix
with a pitch of 35.75 nm, twisting angle �¼ 14 � /13 and
neighbouring monomer distance d¼ 2.75 nm. We will use this
single-stranded description in our study.

We first use two unit vectors, f1 and f2, to denote the
centre line orientations of the two F-actin filaments towards
their barbed-ends. For convenience, we use the following
cartesian coordinate system:

x : f2; z : f1 	 f2= sinð	Þ; y : z	 x,

where z overlaps with the shortest segment connecting f1 and
f2; 	 2 [0, �] is the orientational difference between f1 and f2:
cos(	)¼ f1 � f2; and let S be the shortest distance between the
two filaments.

We then index the binding sites on each filament. We
define the zeroth binding site on one filament to be the first
binding site arising from the z axis towards the filament’s
barbed-end. Incremental positive or negative integer indexes
are assigned to the successive binding sites towards the
barbed- or pointed-ends, respectively. The position and
orientation of the ith binding site on the jth filament are
denoted as pj,i and oj,i.

To further identify pj,i and oj,i, we need to know the
mismatch (mj) and the phase (�j) of the jth filament.

The mismatch is defined as the distance between the z axis
and the zeroth binding site; and the phase is defined as the
off-plane angle between the orientation of the zeroth binding
site and the x–y plane. The cross-linking parameters (S, 	,
m1, m2, �1, �2), together with the F-actin intrinsic parameters
(r, �, d), completely determine pj,i and oj,i.

For the binding sites on the first F-actin filament,
because it is aligned with the x axis, it is straightforward to
derive p1,i and o1,i:

o1,i ¼

0
cosð�1 þ i � �Þ
sinð�1 þ i � �Þ

2
4

3
5, ð15Þ

p1,i ¼ ðm1 þ i � d Þ � xþ r � o1,i, ð16Þ

where the first term in p1,i is the distance along the filament
and the second term is due to the incrementing helical
rotation (o1,i) of the actin monomers.

For the binding sites on the second F-actin filament, we
obtain the rotational matrix from f1 to f2:

R ¼

cosð	Þ � sinð	Þ 0

sinð	Þ cosð	Þ 0

0 0 0

2
64

3
75:

p2,i & o2,i are then:

o2,i ¼ R �

0
cosð�2 þ i � �Þ
sinð�2 þ i � �Þ

2
4

3
5, ð17Þ

p2,i ¼ ðm2 þ i � d Þ � R � xþ r � o2,i þ S � z, ð18Þ

where the additional third term is due to the spacing between
the two F-actin filaments.

Equations (15–18) mathematically describe any binding
site along the two cross-linked F-actin filaments. This
information can then be used as the boundary conditions
to determine the elastic energy of the myosin motor EL.

It is worth noting that parameters (S, 	, m1, m2, �1, �2)
define the property of the cross-linking protein. In particular,
if two F-actin filaments are cross-linked by branching protein
Arp2/3, the parameters are (0 nm, 70�, 0 nm, 0 nm, 0�, 90�), as
illustrated in Figures 7(a) and (b); whereas if two F-actin
filaments are cross-linked by bundling protein Fascin (12 nm,
0�, 0 nm, 0 nm, 0�, 0�), as illustrated in Figures 7(c) and (d).
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