Corrections

The Theory of Subnormal Operators

AMS Surveys and Monographs

volume 36

by

John B Conway

This is a list of corrections for my book *The Theory of Subnormal Operators*. I'd like to thank Nathan Feldman for bringing several of these corrections to my attention.

I would appreciate any further corrections or comments you have.

Notes in **boldface** are not part of the correction.

Page	Line	From	То	
5	-12	basis $\{e_n\}$ for \mathcal{H}	basis for \mathcal{H}	
21	3	$\sum_{k=-n}^{n} c_n z^n = .$	$\sum_{k=-n}^{n} c_k z^k.$	
27	2	Element	Elementary	
131	15	$H^1 \cong (C\partial \mathbb{D})/\mathcal{L}_\perp)^*$	$H^1 \cong (C(\partial \mathbb{D})/\mathcal{L}_\perp)^*$	
135	3	$i \int_0^{2\pi} e^{-i(-t)} dt$	$i \int_0^{2\pi} e^{-i(-t)} h(t) dt$	
140	-4	$v_n^{-1} \in L^1$	$v_n^{-1} \in L^\infty$	
143	13	2.6	12.6	
159	19	for $n \geq 1$, \mathcal{H}_n is infinite	for $n \ge 1$, dim $\mathcal{H}_n > 1$ and	
		dimensional and		
159	-2	-2 The paragraph starting here must be replaced. Contrary to the		
		statement on line 2 of page 160, all operators on a finite dimensional		
		space are essentially normal. (Hyponor	mal operators on a finite	
		dimensional space are normal, hence the	e confusion.)	
205	-9	There is no 10.7.		
211	-1	at f	at x	
216	15	$\widetilde{\nu}$ vanishes	$\hat{\nu}$ vanishes	
222	- 4	defined of	defined on	
231	-15	L_{k_x}	$(L_k)_x$	
231	-15	L_{k_y}	$(L_k)_y$	
233	16	Now consider	For fixed n consider	
240	-20	and weak [*]	and a weak [*]	
242	-7	$(1 - \lambda Z)^{-1}$	$(1 - \lambda \overline{Z})^{-1}$	
243	-15	Q,a	Q, α	
243	-14	$b \to \int Z d\omega_b$	$\beta \to \int Z d\omega_{\beta}$	
243	-13	takes a	takes α	
244	17	set E	set Δ	
260	11	the idempotent	an idempotent	
266	-6	F in \mathcal{B}	F in $L^{\infty}(\mathcal{B})$	
272	12	\sum	\sum	
		k		
272	14	\sum_{k}	\sum	
276	-11	to the band $L^{\infty}(\mathcal{B})$	to $L^{\infty}(\mathcal{B})$	
291 he	eader	$H^{\infty}(2K)$	$H^{\infty}(\partial K)$	
292	2	independent of ω .	independent of the choice of points a_n .	
293 he	eader	$H^{\infty}(2K)$	$H^{\infty}(\partial K)$	
$295~\mathrm{he}$	eader	$H^{\infty}(2K)$	$H^{\infty}(\partial K)$	
304	2	f(z)	$f_n(z)$	
304	-13	$\{z z \le 1/2\}$	$\{z: z \le 1/2\}$	
310	-4	$\mathcal{K}, \mathcal{K}_1, \mathcal{K}_2, \dots$ such	$\mathcal{K}, \mathcal{K}_1, \mathcal{K}_2, \ldots$, such	
312	7	$\mathcal{K}, \mathcal{K}_1, \mathcal{K}_2, \dots$ such	$\mathcal{K}, \mathcal{K}_1, \mathcal{K}_2, \ldots$, such	
326	-18	if the components	if the diameters of the components	

TOSO Corrections

328	17	$\widehat{ u}(b)$	$\widetilde{ u}(b)$
337	12	$\int_{B_{\delta} \setminus E}$	$\int_{B_{\delta} \setminus E_{\epsilon}}$
337	-5	$h_n(a_n)$	$h_n(a)$
347	-12	$ a > 1/\delta u $	$ a > (1/\delta) u $
351	11	μ and	μ and,
352	6	Theorem 5.1 for normal operators	Theorem 5.1 with $C = 1$
		with $C = 1$.	for normal operators.
352	-16	$P^{\infty}(\mu)$	$P^{\infty}(\mu)_*$
352	-1	then there is	then for every $\epsilon > 0$ there is
355	7	$=\epsilon$	$\leq \epsilon$
$357 \ 10$		$L = x \otimes y_n$	$L_n = x \otimes y_n$