The Theory of Subnormal Operators

AMS Surveys and Monographs

volume 36
by
John B Conway

This is a list of corrections for my book The Theory of Subnormal Operators. I'd like to thank Nathan Feldman for bringing several of these corrections to my attention.

I would appreciate any further corrections or comments you have.
Notes in boldface are not part of the correction.

Page	Line	From	To
5	-12	basis $\left\{e_{n}\right\}$ for \mathcal{H}	basis for \mathcal{H}
21	3	$\sum_{k=-n}^{n} c_{n} z^{n}=$	$\sum_{k=-n}^{n} c_{k} z^{k}$.
27	2	Element	Elementary
131	15	$\left.H^{1} \cong(C \partial \mathbb{D}) / \mathcal{L}_{\perp}\right)^{*}$	$H^{1} \cong\left(C(\partial \mathbb{D}) / \mathcal{L}_{\perp}\right)^{*}$
135	3	$i \int_{0}^{2 \pi} e^{-i(-t)} d t$	$i \int_{0}^{2 \pi} e^{-i(-t)} h(t) d t$
140	-4	$v_{n}^{-1} \in L^{1}$	$v_{n}^{-1} \in L^{\infty}$
143	13	2.6	12.6
159	19	for $n \geq 1, \mathcal{H}_{n}$ is infinite dimensional and	for $n \geq 1, \operatorname{dim} \mathcal{H}_{n}>1$ and
159	-2	The paragraph starting statement on line 2 of pa space are essentially nor dimensional space are no	placed. Contrary to the rators on a finite dimensional nal operators on a finite confusion.)
205	-9	There is no 10.7.	
211	-1	at f	at x
216	15	$\widetilde{\nu}$ vanishes	$\widehat{\nu}$ vanishes
222	- 4	defined of	defined on
231	-15	$L_{k_{x}}$	$\left(L_{k}\right)_{x}$
231	-15	$L_{k_{y}}$	$\left(L_{k}\right)_{y}$
233	16	Now consider	For fixed n consider
240	-20	and weak*	and a weak*
242	-7	$(1-\lambda Z)^{-1}$	$(1-\lambda \bar{Z})^{-1}$
243	-15	Q, a	Q, α
243	-14	$b \rightarrow \int Z d \omega_{b}$	$\beta \rightarrow \int Z d \omega_{\beta}$
243	-13	takes a	takes α
244	17	set E	set Δ
260	11	the idempotent	an idempotent
266	-6	F in \mathcal{B}	F in $L^{\infty}(\mathcal{B})$
272	12	\sum_{k}	\sum
272	14	\sum_{k}	\sum
276	-11	to the band $L^{\infty}(\mathcal{B})$	to $L^{\infty}(\mathcal{B})$
291 he	ader	$H^{\infty}(2 K)$	$H^{\infty}(\partial K)$
292	2	independent of ω.	independent of the choice of points a_{n}.
293 he	ader	$H^{\infty}(2 K)$	$H^{\infty}(\partial K)$
295 he	ader	$H^{\infty}(2 K)$	$H^{\infty}(\partial K)$
304	2	$f(z)$	$f_{n}(z)$
304	-13	$\{z\|z\| \leq 1 / 2\}$	$\{z:\|z\| \leq 1 / 2\}$
310	-4	$\mathcal{K}, \mathcal{K}_{1}, \mathcal{K}_{2}, \ldots$ such	$\mathcal{K}, \mathcal{K}_{1}, \mathcal{K}_{2}, \ldots$, such
312	7	$\mathcal{K}, \mathcal{K}_{1}, \mathcal{K}_{2}, \ldots$ such	$\mathcal{K}, \mathcal{K}_{1}, \mathcal{K}_{2}, \ldots$, such
326	-18	if the components	if the diameters of the components

328	17	$\widehat{\nu}(b)$
337	12	$\int_{B_{\delta} \backslash E}$
337	-5	$h_{n}\left(a_{n}\right)$
347	-12	$\|a\|>1 / \delta\|u\|$
351	11	μ and
352	6	Theorem 5.1 for normal operators
		with $C=1$.
352	-16	$P^{\infty}(\mu)$
352	-1	then there is
355	7	$=\epsilon$
35710		$L=x \otimes y_{n}$

```
\(\widetilde{\nu}(b)\)
\(\int_{B_{\delta} \backslash E_{\epsilon}}\)
\(h_{n}(a)\)
\(|a|>(1 / \delta)|u|\)
\(\mu\) and,
Theorem 5.1 with \(C=1\)
for normal operators.
\(P^{\infty}(\mu)_{*}\)
then for every \(\epsilon>0\) there is
\(\leq \epsilon\)
\(L_{n}=x \otimes y_{n}\)
```

