Additions, Changes, and Corrections
for

Functions of One Complex Variable

(Second edition, fourth printing)
by
John B Conway
This is a list of additions, changes, and corrections for my book Functions of One Complex Variable (Second Edition,Fourth Printing). These corrections also apply to the fifth and sixth printing. The book is currently in the seveth printing of the second edition and almost all of these corrections have been executed there.

I have a separate list of additions and changes that will appear in the next edition. This is also available from my WWW page.

The following mathematicians have helped me to compile this list. Joel Anderson, Jonathan Arazy, Rajendra Bhatia, H P Boas, G D Bruechert, R B Burckel, Paul Chernoff, Norma Elias, George Gaspar, Paul Halmos, Xun-Cheng Huang, M D Humphries, René Mata-Guarneros, Oisin McGuinness, David Minda, Jeff Nichols, Billy Rhoades, Stephen Rowe, William Salkin, Glenn Schober, Karl Stromberg, Thad Tarpey, Shelden Trimble, David Ullrich.

I would appreciate any further corrections or comments you wish to make.

Page	Line	From	To
xii	23	Mondromy	Monodromy
1	7	supermum	supremum
5	-10	in an nth	is an nth
5	-3	$\frac{1}{\sqrt{2}}(-1+i \sqrt{3})$	$\frac{1}{2}(-1+i \sqrt{3})$
5	-3	$\frac{1}{\sqrt{2}}(-1-i \sqrt{3})$	$\frac{1}{2}(-1-i \sqrt{3})$
10	11	its projection	its stereographic projection
15	14	one point	one end point
17	18	R	\mathbb{R}
17	20	R	\mathbb{R}
25	-4	Let $A \subseteq X$;	Let A be a non-empty subset of X;
25	-2	Let $A \subseteq X$;	Let A be a non-empty subset of X;
27	13	If K is a compact	If K is a non-empty compact
27	-4	are subsets	are non-empty subsets
28	6	are disjoint sets	are non-empty disjoint sets
29	-4	(Ω, p)	(Ω, ρ)
35	23	that f be	that g be
41	-14	Any function	Any real-valued function
42	16	$\frac{\phi(s, t)+\psi(x, t)}{s+i t}$	$\frac{\phi(s, t)+i \psi(s, t)}{s+i t}$
62	-9	denoted it by	denoted by
64	-4	\mathbb{C}	\mathbb{R}
75	-2	$(-1)^{n}\binom{2 n}{n}$	$(-1)^{n-1}\binom{2 n}{n}$
80	-2	$e^{2 \pi i n t}$.	$e^{2 \pi i n t}, 0 \leq t \leq 1$.
83	15	$z \geq R$	$\|z\| \geq R$
85	1	By Lemma 5.1 . . on \mathbb{C};	By Lemma $5.1 g$ is analytic on H and by an analogue of Leibniz's rule (for example, see Exercise 2.2) g is analytic on G;
85	-14	Define $g(z, w)$	Define $\phi(z, w)$
87	10	$B\left(\pm 1 ; \frac{1}{2}\right)$	$\bar{B}\left(\pm 1 ; \frac{1}{2}\right)$
99	-12	each $z \in \Omega$	each $z \in G$
100	16	then	then
100	-6	triangle	triangular
101	-13	(II.3.6)	(II.3.7)
107	-8	$\|z-a\|>r_{1}$	$\|z-a\|>R_{1}$
117	-5	This can more easily be ob	ng the substitution $x \rightarrow 1 / x$.
122	8	decrease the spaces between	and between $\sinh ^{2}$ and y
122	9	decrease the spaces between	and between $\sinh ^{2}$ and y
130	-13	$\operatorname{Ref}(\mathrm{z})$	$R e f(z)$
131	17	D onto	D into
131	22	$=\partial D$.	$=\partial D$, and, from the preceding material, $\phi(D)=D$.
138	4,6	Circle	Circles
140	-11	$\exp (\mid z)^{a}$	$\exp (\mid z)^{a}$
141	-10	δ	ϵ
141	-9	$\lim _{r \rightarrow 0}$	$\lim _{r \rightarrow \infty}$
141	-9	$\exp (-\epsilon / r$	$\exp (-\epsilon / r)$
141	-12	$\bigcup^{\infty} K_{n}$	The ∞ is not clear
146	-6	$\stackrel{n=1}{\text { Theorem II. } 4.9 \mathcal{F}}$	Theorem II.4.9, \mathcal{F} (also correct spacing)
147	-2	as $k \rightarrow \infty$	as $j \rightarrow \infty$
149	-5	be compact	be a compact

150	-2	is equicontinuous.	is equicontinuous at each point of G.
153	-11	Ascoli-Arzela	Arzela-Ascoli
153	-4	$\|f(a)-f(z)\| \leq$	$\|f(a)-f(z)\|=$
154	-1	Show that	If G is a region, show that
156	17	put $M=\|f(a)\|$	put $M=\|f(a)\|+1$.
160	18	is analytic	is an analytic
167	-10	theorem	lemma
176	13	situation).	situation?)
186	8	$(\cos \theta)^{2 u-1}(\sin \theta) 2^{v-1}$	$(\cos \theta)^{2 u-1}(\sin \theta)^{2 v-1}$
188	14	$\delta>\beta>\alpha$	$\delta>\beta>\alpha>0$
195	2	Theorem	theorem
206	3	$k \leq 1$	$k \geq 1$
206	-12	sequences of distinct points in G	sequences of distinct points in G without limit points in G
209	-13	a free ideal	a proper free ideal
209	-5	k_{n}	$k_{n}+1$
209	-4	k_{n}	$k_{n}+1$
211	19	$\int_{T} f$	$\int_{T} g$
211	19	$\int_{P} f$	$\int_{P} g$
213	-13	x in $G_{0} f(x)$	x in $G_{0}, f(x)$
213	-12	G+	G_{+}
214	-9,-8	$\begin{aligned} & f_{s}(z)=f_{t}(z), z \in D_{s} \cap D_{t} \text { whenever } \\ & \|s-t\|<\delta \end{aligned}$	$f_{s}(z)=f_{t}(z)$, whenever $\|s-t\|<\delta$ and z belongs to the component of $D_{s} \cap D_{t}$ that contains $\gamma(s)$.
215	22	But since	Let H be a connected subset of $D_{t} \cap B_{t}$ which contains $\gamma(s)$ and $\gamma(t)$. But since
215	22	z in $D_{t} \cap B_{t}$	z in H.
215 228	27 6	$\|s-t\|<\delta ; \text { so } G=D_{t} \cap B_{t} \cap D s \cap B s$ contains $\gamma(s)$ and, therefore, is a non-empty open set.	$\|s-t\|<\delta$. Let G be a region such that $\gamma((t-\delta, t+\delta)) \subseteq G$ $\subseteq D_{t} \cap B_{t}$; in particular, $\gamma(s) \in G$.
228 235	6 5	($\left.\mu \circ h^{-1}\right)$	$B \cap D$ that contains a $\left(\mu \circ h^{-1}\right)^{-1}$
235	-1	as in 6.3(c)	as in 6.3(b)
238	13	$\psi(f(x)) \in F$	$\phi(x) \in F$
238	-15	let $(V, \phi) \in \Phi$ such that	let $(V, \phi) \in \Phi$ with a in V such that
238	-12	not constant.	not constant on any component of $\phi(W)$.
239	4	6.3(c)	6.3(b)
239	24	There \mathcal{F} consists	Then \mathcal{F} consists
241	16	continuation along γ	continuation along γ with each D_{t} a disk
247	10	off $[0,1]$	of $[0,1]$
248	20	$\left\{\left(g_{t}, A_{t},\right)\right\}$	$\left\{\left(g_{t}, A_{t}\right)\right\}$
248	-17	the component	a component
249	-2	$2 \pi i[1-t)$	$2 \pi i[(1-t)$
253	-2	then,	then
254	-9	$a \delta$	a δ
260	-9	$\frac{R^{2}-r^{2}}{\left\|R e^{i t}-r e^{i \theta}\right\|^{2}}$	$\frac{R^{2}-r^{2}}{\left\|R-r e^{i \theta}\right\|^{2}}$
261	-10	Eliminate the material from "If ρ constant C." on line -5 . Substitu	R then ..." to "for some e for this the following.

"If $\rho<R$, then, for $m \leq n$, Harnack's Inequality applied to the positive harmonic function $u_{n}-u_{m}$ implies there is a constant C depending only on ρ and R such that $0 \leq u_{n}(z)-u_{m}(z) \leq C\left[u_{n}(a)-u_{m}(a)\right]$ for $|z-a| \leq \rho$."

10
12
18
9
13

18
-8
-9
-6
-3
-5
14
-5
-12
$\log 2 n(r) \leq \log M(r)$
$v(z) \leq 1$
$\mathbb{C}_{\infty}-G$ such that
Theorem VIII.2.2(c)
barrier at 0 .
$(y-t)^{2} / x^{2}$
$\bigcup_{n=1}^{\infty}\left\{\gamma_{n}\right\}$
to a harmonic function h
$f\left(z_{n_{k}}\right) \rightarrow \omega$
$\leq \frac{\alpha}{2}|z|^{\mu+1}$
$<\frac{1}{2} \alpha|z|^{\mu+1}$ for $|z|>r_{3}$.
$\sum_{n=1}^{\infty}$
for some $\epsilon>0$
$f(0) \neq 0$
$(\log 2) n(r) \leq \log M(2 r)$

Change the inequalities here from

$$
\begin{aligned}
\log 2 n(r) r^{-(p+1)} & \leq \log [M(r)] r^{-(p+1)} \\
& \leq r^{(\lambda+\epsilon)-(p+1)}
\end{aligned}
$$

to

$$
\begin{aligned}
(\log 2) n(r) r^{-(p+1)} & \leq \log [M(2 r)] r^{-(p+1)} \\
& \leq r^{(\lambda+\epsilon)-(p+1)} 2^{\lambda+\epsilon}
\end{aligned}
$$

$-5 \leq \log M(r)$. Since f has order λ,
$\leq \log M(2 r)$. Since f has order λ,
$\log M(r) \leq r^{\lambda+\frac{1}{2} \epsilon}$
$\log M(2 r) \leq(2 r)^{\lambda+\frac{1}{2} \epsilon}$
-1
-4 Use Exercise 2.9
-1 with zeros $\{\log 2, \log 3, \ldots\}$
$k^{-(p+1) /(\lambda+\epsilon)}$
Use Exercise 2.8
with zeros $\{\log 2, \log 3, \ldots\}$ and no other zeros.

$$
\begin{aligned}
-5 & =\{a \\
-2 & \text { a branch of } g \text { of } \\
6 & \sqrt{n-1} \pm 2 \\
4 & \text { Montel-Caratheodory } \\
25 & \text { value is possible) } \\
-19 & \text { Corollary XI.3.8). } \\
-17 & \text { with one exception } \\
-10 & \text { conformed }
\end{aligned}
$$

$=\{z$
a branch g of
$\sqrt{n-1}^{\mp 2}$
Montel-Carathéodory
value is possible
Corollary XI.3.8.
conformal

Add the following entry to the List of Symbols.

$\partial_{\infty} G 129$

