Corrections

for

Functions of One Complex Variable, II

Abstract

by

John B Conway

This is a list of corrections for my book Functions of One Complex Variable, II. This is also available from my WWW page (http://www.math.utk. edu/~conway).

Thanks to R B Burckel. I would appreciate any further corrections or comments you wish to make.

Minor corrections			
Page	Line	From	To
ix	10	built in	built-in
3	22	$\sum_{j=1}^{m} n(\gamma ; a)=0$	$\sum_{j=1}^{m} n\left(\gamma^{j} ; a\right)=0$
7	11	$\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right) .$	$\frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right) .$
13	18	Area $\left(D_{n} \cap G_{k}\right)$	Area $\left(f\left(D_{n}\right) \cap \Lambda_{k}\right)$
15	16	$u_{x} y$	$u_{x} d y$
22	-2	analtyic	analytic
23	7	approach a	approach a
24	18	ϵ	ε
24	-2	ϵ	ε
25	23	approaches	approach
25	-13	free analyticity	free analytic
25	-10	analytically	analyticity
25	-7	$h(0)=0$	$h(0)=a$
25	-5	$\pi 2<\arg (z-r)<\pi 2+\alpha\}$	$\pi / 2-\alpha<\arg (z-t)<\pi / 2+\alpha\}$
32	7	$f(B(b ; \varepsilon))$	$f(B(a ; \varepsilon))$
33	11	bound region	bounded region
34	-7	$\backslash X_{n}$	$\backslash \tau\left(X_{n}\right)$
37	17	Schwartz	Schwarz
51	15	Jordan region	simple Jordan region
51	17	Jordan	simple Jordan
51	-4	Jordan	simple Jordan
53	12	Jordan	simple Jordan
54	11	$=\left\|\int_{\theta_{1}}^{\theta_{2}} \tau^{\prime}\left(-1+r e^{i \theta}\right) r i e^{i \theta} d \theta\right\|$.	$\leq \int_{\theta_{1}}^{\theta_{2}}\left\|\tau^{\prime}\left(-1+r e^{i \theta}\right)\right\| r d \theta$.
54	12	the angle	the largest angle
54	12	$1+r e^{i \theta}$	$-1+r e^{i \theta}$
54	14	Schwartz	Schwarz
55	-18	Jordan	simple Jordan
56	-10	polynimally	polynomially
67	14	\leq	\geq
67	15	\leq	\geq
69	-18	(7.5)	(1.4)
69	-2	$a_{n} \geq g^{(n)}(0) / n!$	$\left\|a_{n}\right\| \geq\left\|g^{(n)}(0)\right\| / n!$
71	-9	G	G (italics)
71	-7	the j's and k's here should be slanted.	
77	3	$\phi_{1}(\partial \mathcal{D}), \phi_{1}(\partial \mathcal{D})=\phi_{1}\left(\partial K_{00}\right)$	$\phi_{1}(\partial \mathcal{D})=\phi_{1}\left(\partial K_{00}\right)$
81	-7	$\left\{\Phi_{0}, \Phi_{1}, \ldots, \Phi_{n}\right\}$	$\Phi_{0}, \Phi_{1}, \ldots, \Phi_{n}$

82	-3	Thus there are Jordan arcs	Since C_{j} is an analytic curve, there are Jordan arcs
83	1	vlaue	value
82	-2	$\eta_{1}(0) \neq \eta_{2}(0)$,	$\eta_{1}(0) \neq \eta_{2}(0),\left\|\eta_{i}(t)-a_{i}\right\|<\varepsilon$,
83	5	and ins $C \subseteq G$	and $C \subseteq\left\{z \in G: \operatorname{dist}\left(z, C_{j}\right)<\varepsilon\right\}$, so ins $C \subseteq G$
83	8	such that $\phi($ ins $C)=$ ins γ	such that $\phi(\operatorname{ins} C) \subseteq$ ins γ
84	3	$(z-a)^{-1}$	$(z-\alpha)^{-1}$
84	-1	multiplicites	multiplicities
85	9	C	C
85	18	set is non-empty	set contains 0
91	11	that is insistent on	that requires
91	-8	inner circle of Ω.	inner circle of Ω and orient γ_{1} so that $n\left(\phi\left(\gamma_{1}\right) ; 0\right)=-1$.
92	13	with ψ.	with ψ. Since f is a conformal equivalence we have $n\left(\psi\left(\gamma_{1}\right) ; 0\right)=n\left(f\left(\phi\left(\gamma_{1}\right)\right) ; 0\right)=-1$
92	-5	So $n\left(\gamma_{1} ; 0\right)=-1, n\left(\gamma_{0} ; 0\right)=1$, and $n\left(\gamma_{j} ; 0\right)=0$ for $2 \leq j \leq n$.	So $n\left(\gamma_{j} ; 0\right)=0$ for $2 \leq j \leq n$ and we can orient γ_{0} and γ_{1} such that $n\left(\gamma_{1} ; 0\right)=-1$ and $n\left(\phi_{0} ; 0\right)=1$.
93	11	anlytic Jordan	analytic n-Jordan
94	3	Argument Principle	Argument Principle, if $\zeta \notin \phi\left(\gamma_{j}\right)$ for $0 \leq j \leq n$, then
94	8	that $0 \leq j \leq n$ and $\|\zeta\| \neq r_{j}$,	that for $0 \leq j \leq n$,
97	-11	$f: G \rightarrow \Lambda$	$f: \Omega \rightarrow \Lambda$
98	-2	$n\left(\gamma_{j}, a\right)$	$n\left(\gamma_{j} ; a\right)$
	-12	r_{j}^{2}	r_{j}^{2}
		$\frac{\bar{z}-\bar{a} j}{}$	$\overline{\bar{z}-\bar{a}_{j}}$
102	-8	$\underset{n}{(14.7 .14)}$	$\left(\begin{array}{c} 14.7 .16) \end{array}\right.$
103	-13	\sum	\sum
		$\sum_{k=m}$	$\sum_{k=m}$
106	10	It follows that $g(\mathbb{D})=\mathbb{D}$ and so $g(z)-\lambda(z-a)(1-\bar{a} z)^{-1}$.	It follows from Proposition 7.5 that g is a Möbius transformation.
107	16	thereom.	theorem.
107	-14	equivalence	equivalences
110	20	$z \in T(w)$	$z \in T(W)$
110	-4	bet	be
113	-2	(G, τ)	$\left(G_{1}, \tau_{1}\right)$
114	-5	But the only way such a conformal equivalence can exist is if $G=\mathbb{C}$. But then Proposition 14.1.1 implies	But according to Proposition 14.1.1, $G=\mathbb{C}$ and $h(z)=a z+b$ for complex numbers a and b with $a \neq 0$.

116	10	that $h(z)=a z+b$ for complex numbers a and b with $a \neq 0$. dentoed	denoted
119	10	$\operatorname{Im} z=\operatorname{Im} M^{-1} M(z)<$	$\begin{aligned} & \operatorname{Im} z=\operatorname{Im} M M^{-1}(z)<\operatorname{Im} M^{-1}(z) \\ & \leq \operatorname{Im} z \end{aligned}$
119	-10	$c, d \in \mathbb{Z}\}$	$c, d \in \mathbb{Z}$ and c, d occur in some M in $\mathcal{G}\}$
119	-7	G	\mathcal{G}
121	10	an	and
122	5	no common divisor, there is an odd integer d such that b and d have no common divisor and there is an odd integer a	no common divisor, there is an odd integer a
122	-14	a neighborhood of z_{+}and	an open neighborhood of z_{+}(Verify!) and
122	-4	First λ	First, λ
124	6	Proposition 2.1	Theorem 1.3 and Proposition 2.1
124	15	$\mathcal{F} \mid \mathcal{B}$	$\mathcal{F} \mid B$
124	-7	w in B	z in B
126	15	continuation	continuation along γ
126	18	continuation and	continuation, $g_{i}\left(\Delta_{i}\right) \subseteq G$, and
126	20	$\left(G_{n}, \Delta_{0}\right)$,	$\left(G_{n}, \Delta_{0}\right)$ and $g(\Delta) \subseteq G$,
126	-9	path γ	path γ such that $g_{t}\left(\Delta_{t}\right) \subseteq G$ for all t
126	-8	z in Δ_{t}	z (italics) in Δ_{t}
127	2	neighborhood of α_{0}	neighborhood of α_{0} that is contained in Ω
127	5	$g\left(\alpha_{0}\right)$ and	$g\left(\alpha_{0}\right)=0$ and
127	7	continuation	continuation along γ
127	8	that $g_{t}\left(\Delta_{t}\right)$	that $\Delta_{t} \subseteq \Omega$ and $g_{t}\left(\Delta_{t}\right)$
127	10	continuation and	continuation with $\Delta_{i} \subseteq \Omega$ and
127	15	Since $h_{0} \in \mathcal{F}, \mathcal{F} \neq \emptyset$.	Hence $h_{0} \in \mathcal{F}$ and $\mathcal{F} \neq \emptyset$.
127	-16	$B\left(\alpha_{O} ; \delta\right)$	$B\left(\alpha_{0} ; \delta\right)$
128	8	the function	a function
128	12	continuation of h ever	continuation of h in G with values in \mathbb{D} ever
128	-8	$g^{\prime}\left(h\left(\alpha_{O}\right)\right) \kappa$	$g^{\prime}\left(h\left(\alpha_{0}\right)\right) \kappa$
129	4	the function	a function
129	19	Thus the	Thus (there is something extra to do here) the
129	-7	appraches	approches
131	-7	$f(a)=0$	$f(a)=a$

$205-10 \quad \operatorname{Re}\left(\frac{1+\bar{w}}{1-z \bar{w}}\right) \quad \operatorname{Re}\left(\frac{1+z \bar{w}}{1-z \bar{w}}\right)$

More substantial corrections

Page Line From
1314 Because $f\left(\partial D_{n}\right)$ is a smooth curve,

8220 Theorem 3.4 should also show that if G is on the "left"
of a boundary curve γ of G, then Ω is on the "left" of $\phi(\gamma)$.
$136 \quad-8 \quad$ Add the following sentence as a separate paragraph. The treatment in this section and the next are based on Duren [1983]. In the appropriate place, add the following reference.
P L Duren [1983], Univalent Functions, Springer-Verlag, New York.

The set $G \backslash \cup_{n} D_{n}$ can be wr countable union of compact $\cup_{j} K_{j}$ (Why?). Since f is ana locally Lipschitz. Thus Area for each $j \geq 1$. Thus

