Corrections

for

Functions of One Complex Variable, II

by

John B Conway

This is a list of corrections for my book Functions of One Complex Variable, II. This is also available from my WWW page (http://www.math.utk. edu/ \sim conway).

Thanks to R B Burckel.

I would appreciate any further corrections or comments you wish to make.

Minor corrections

Page Line		From	
ix	10	built in	bu
3	22	$\sum_{j=1}^{m} n(\gamma; a) = 0$	\sum
7	11	$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right).$	$rac{\partial f}{\partial \bar{z}}$
13	18	Area $(D_n \cap G_k)$	Ar
15	16	$u_x y$	u_x
22	-2	analtyic	an
23	7	approach a	ар
24	18	ϵ	ε
24	-2	ϵ	ε
25	23	approaches	ap
25	-13	free analyticity	fre
25	-10	analytically	an
25	-7	h(0) = 0	h(
25	-5	$\pi 2 < \arg(z-r) < \pi 2 + \alpha \}$	$\pi/$
32	7	$f(B(b;\varepsilon))$	f(
33	11	bound region	bo
34	-7	$\setminus X_n$	$\setminus \tau$
37	17	Schwartz	Scl
51	15	Jordan region	sin
51	17	Jordan	\sin
51	-4	Jordan	\sin
53	12	Jordan	\sin
54	11	$= \left \int_{\theta_1}^{\theta_2} \tau'(-1 + re^{i\theta}) rie^{i\theta} d\theta \right .$	\leq
54	12	the angle	$^{\mathrm{the}}$
54	12	$1 + re^{i\theta}$	-1
54	14	Schwartz	\mathbf{Sc}
55	-18	Jordan	\sin
56	-10	polynimally	ро
67	14	\leq	\geq
67	15	\leq	\geq
69	-18	(7.5)	(1.
69	-2	$a_n \ge g^{(n)}(0)/n!$	$ a_r $
71	-9	G	G
71	-7	the j's and k's here should	
		be slanted.	
77	3	$\phi_1(\partial \mathcal{D}), \phi_1(\partial \mathcal{D}) = \phi_1(\partial K_{00})$	ϕ_1
81	-7	$\{\Phi_0,\Phi_1,\ldots,\Phi_n\}$	Φ_0

o 1ilt-in

$$\sum_{j=1}^{m} n(\gamma^{j}; a) = 0$$

$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).$$
Area $(f(D_{n}) \cap \Lambda_{k})$
 $u_{x} dy$
analytic
approach a
 ε
 ε
approach
free analytic
analyticity
 $h(0) = a$
 $\pi/2 - \alpha < \arg(z - t) < \pi/2 + \alpha$ }
 $f(B(a; \varepsilon))$
bounded region
 $\langle \tau(X_{n})$
Schwarz
simple Jordan region
simple Jordan
simple Jordan

$$\leq \int_{\theta_1}^{\theta_2} |\tau'(-1+re^{i\theta})| r \, d\theta.$$

the largest angle $-1 + re^{i\theta}$ Schwarz simple Jordan polynomially \geq \geq (1.4) $|a_n| \geq |g^{(n)}(0)|/n!$ G (italics)

 $= \phi_1(\partial K_{00}) \qquad \phi_1(\partial \mathcal{D}) = \phi_1(\partial K_{00})$ $\Phi_0, \Phi_1, \dots, \Phi_n$

82	-3	Thus there are Jordan arcs	Since C_j is an analytic curve
~~			are Jordan arcs
83	1	vlaue	value
82	-2	$\eta_1(0) \neq \eta_2(0),$	$\eta_1(0) \neq \eta_2(0), \eta_i(t) - a_i < \varepsilon_1$
83	5	and $\operatorname{Ins} C \subseteq G$	and $C \subseteq \{z \in G : \operatorname{dist}(z, C_j)$
0.0	0		so $\operatorname{Ins} C \subseteq G$
83	8	such that $\phi(\operatorname{Ins} C) = \operatorname{Ins} \gamma$	such that $\phi(\operatorname{Ins} C) \subseteq \operatorname{Ins} \gamma$
84	3	(z-a)	$(z-\alpha)^{-1}$
84	-1	multiplicites	multiplicities
85	9 10		
85	18	set is non-empty	set contains 0
91 01	11	that is insistent on	that requires
91	-8	inner circle of Ω .	inner circle of Ω and orient γ
00	10	•1 /	so that $n(\phi(\gamma_1); 0) = -1$.
92	13	with ψ .	with ψ . Since <i>f</i> is a conform
			equivalence we have $(f(f(x))) = 0$
00	۲	$C_{\alpha} = (\alpha + 0) \qquad 1 = (\alpha + 0) \qquad 1$	$n(\psi(\gamma_1);0) = n(f(\phi(\gamma_1));0) =$
92	-0	So $n(\gamma_1; 0) \equiv -1, n(\gamma_0; 0) \equiv 1,$	So $n(\gamma_j; 0) \equiv 0$ for $2 \leq j \leq n$
		and $n(\gamma_j; 0) \equiv 0$ for $2 \leq j \leq n$.	and we can offent γ_0 and γ_1 such that $\pi(\alpha, \alpha) = 1$ and
			such that $n(\gamma_1, 0) = -1$ and $n(\phi_1, 0) = 1$
02	11	anlytic Iordan	$n(\varphi_0, 0) = 1.$
95 04	3 11	Argument Principle	Argument Principle if $\zeta \neq \phi$
94	0	Argument i imerpre	for $0 \le i \le n$ then
0/	8	that $0 \leq i \leq n$ and $ \ell \neq r$.	that for $0 \le j \le n$, then
94 97	_11	$f: G \to \Lambda$	$f: \Omega \to \Lambda$
98	-2	$n(\gamma \cdot q)$	$n(\gamma \cdot \cdot a)$
50		n (13, a)	n (13, w)
1.01	10	r_j^2	r_i^2
101	-12	$\overline{\bar{z}-\bar{a}j}$	$\overline{\bar{z}-\bar{a}_i}$
102	-8	(14.7.14)	(14.7.16)
100	1.0	n	\sim
103	-13	\sum	\sum
106	10	k=m It follows that $q(\mathbb{D}) = \mathbb{D}$ and	k=m It follows from Proposition 7
100	10	The follows that $g(\mathbb{D}) = \mathbb{D}$ and so $g(z) = \lambda(z - a)(1 - \bar{a}z)^{-1}$	that <i>a</i> is a Möbius transform
107	16	so $g(z) = \lambda(z - u)(1 - uz)$.	theorem
107	_1/	equivalence	equivalences
110	20	$z \in T(w)$	$z \in T(W)$
110	-4	bet	$\sim C I (W)$
113	-2	(G, τ)	(G_1, τ_1)
114	-5	(\sim, \prime) But the only way such a	But according to Proposition
* * 1	0	conformal equivalence can	$G = \mathbb{C}$ and $h(z) = az + h$ for
		exist is if $G = \mathbb{C}$ But	numbers a and b with $a \neq 0$
		then Proposition $14.1.1$ implies	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
		mon r roposition r r.r.r miphos	

ce C_j is an analytic curve, there Jordan arcs e $0) \neq \eta_2(0), |\eta_i(t) - a_i| < \varepsilon,$ $C \subseteq \{z \in G : \operatorname{dist}(z, C_j) < \varepsilon\},\$ $\operatorname{ns} C \subseteq G$ that $\phi(\operatorname{ins} C) \subseteq \operatorname{ins} \gamma$ $\alpha)^{-1}$ tiplicities contains 0 requires er circle of Ω and orient γ_1 hat $n(\phi(\gamma_1); 0) = -1$. ψ . Since f is a conformal valence we have $(\gamma_1); 0) = n(f(\phi(\gamma_1)); 0) = -1.$ $n(\gamma_j; 0) = 0$ for $2 \le j \le n$ we can orient γ_0 and γ_1 that $n(\gamma_1; 0) = -1$ and $_{0};0)=1.$ lytic *n*-Jordan ument Principle, if $\zeta \notin \phi(\gamma_j)$ $0 \leq j \leq n$, then for $0 \leq j \leq n$, $\Omega \to \Lambda$ $_{i};a)$ \bar{a}_j 7.16)ollows from Proposition 7.5 g is a Möbius transformation. orem. ivalences T(W) τ_1) according to Proposition 14.1.1, \mathbb{C} and h(z) = az + b for complex

$116\\119$	10 10	that $h(z) = az + b$ for complex numbers a and b with $a \neq 0$. dentoed $\operatorname{Im} z = \operatorname{Im} M^{-1} M(z) <$
119	-10	$c, d \in \mathbb{Z}\}$
119	-7	G
121	10	an
122	5	no common divisor,
		there is an odd integer
		d such that b and d have no
		common divisor and there
		is an odd integer a
122	-14	a neighborhood of z_+ and
122	-4	First λ
124	6	Proposition 2.1
124	15	$\mathcal{F} \mathcal{B}$
124	-7	w in B
126	15	continuation
126	18	continuation and
126	20	$(G_n, \Delta_0),$
126	-9	path γ
126	-8	$z \text{ in } \Delta_t$
127	2	neighborhood of α_0
127	5	$g(\alpha_0)$ and
127	7	continuation
127	8	that $g_t(\Delta_t)$
127	10	continuation and
127	15	Since $h_0 \in \mathcal{F}, \ \mathcal{F} \neq \emptyset$.
127	-16	$B(\alpha_O; \delta)$
128	8	the function
128	12	continuation of h ever
128	-8	$g'(h(lpha_O))\kappa$
129	4	the function
129	19	Thus the
129	-7	appraches
131	-7	f(a) = 0

denoted Im $z = \text{Im } MM^{-1}(z) < \text{Im } M^{-1}(z)$ $\leq \text{Im } z$ $c, d \in \mathbb{Z}$ and c, d occur in some M in \mathcal{G} } \mathcal{G} and no common divisor, there is an odd integer a

an open neighborhood of z_+ (Verify!) and First, λ Theorem 1.3 and Proposition 2.1 $\mathcal{F}|B$ z in Bcontinuation along γ continuation, $g_i(\Delta_i) \subseteq G$, and (G_n, Δ_0) and $g(\Delta) \subseteq G$, path γ such that $g_t(\Delta_t) \subseteq G$ for all t $z \ (italics) \ in \ \Delta_t$ neighborhood of α_0 that is contained in Ω $g(\alpha_0) = 0$ and continuation along γ that $\Delta_t \subseteq \Omega$ and $g_t(\Delta_t)$ continuation with $\Delta_i \subseteq \Omega$ and Hence $h_0 \in \mathcal{F}$ and $\mathcal{F} \neq \emptyset$. $B(\alpha_0;\delta)$ a function continuation of h in Gwith values in $\mathbb D$ ever $g'(h(\alpha_0))\kappa$ a function Thus (there is something extra to do here) the approches f(a) = a

205 -10 Re
$$\left(\frac{1+\bar{w}}{1-z\bar{w}}\right)$$
 Re $\left(\frac{1+z\bar{w}}{1-z\bar{w}}\right)$

More substantial corrections

Page Line From

13 14 Because $f(\partial D_n)$ is a smooth curve,

То

The set $G \setminus \bigcup_n D_n$ can be wr countable union of compact $\bigcup_j K_j$ (Why?). Since f is an locally Lipschitz. Thus Area for each $j \ge 1$. Thus

82	20	Theorem 3.4 should also show
		that if G is on the "left"
		of a boundary curve γ
		of G , then Ω is on
		the "left" of $\phi(\gamma)$.
136	-8	Add the following sentence as a separate paragraph.
		The treatment in this section and the next are based on Duren [1983].
385		In the appropriate place, add the following reference.

P L Duren [1983], Univalent Functions, Springer-Verlag, New York.