Corrections
for
Functions of One Complex Variable, 11
by
John B Conway

This is a list of corrections for my book Functions of One Complex Vari-
able, II. This is also available from my WWW page (http://www.math.utk.
edu/~conway).

Thanks to R B Burckel.

I would appreciate any further corrections or comments you
wish to make.
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G

the j’s and k’s here should
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Thus there are Jordan arcs

vlaue

m(0) # 12(0),

and insC' C

such that ¢(insC') = ins~y
(2 —a)!

multiplicites

C

set is non-empty

that is insistent on

inner circle of €.

with .

So n(v1;0) = —1, n(vp;0) =1,
and n(v;;0) =0 for 2 < j <n.

anlytic Jordan
Argument Principle

that 0 < j < n and |(| # ry,
fG—>A
n(7j7a)

2
i

Z—aj
(14.7.14)

D

k=m

It follows that g(D) = D and
so g(z) — A(z —a)(1 —az)"L
thereom.

equivalence

z € T(w)

bet

(G,7)

But the only way such a
conformal equivalence can
exist is if G = C. But

then Proposition 14.1.1 implies

Since C; is an analytic curve, there
are Jordan arcs

value

M (0) # na(0),mi () — ai] < e,

and C C {z € G : dist (2,C}) < e},
soinsC C G

such that ¢(insC) C ins~y

(z—a)™
multiplicities
C

set contains 0

that requires

inner circle of € and orient ~;
so that n(¢(v1);0) = —1.

with ¢. Since f is a conformal
equivalence we have

n((1); 0) = n(f(6(1));0) = —1.
Son(v;;0) =0for2<j<n
and we can orient vy and v
such that n(y1;0) = —1 and
n(q§0; 0) = 1.

analytic n-Jordan

Argument Principle, if ¢ ¢ ¢(v;)
for 0 < 5 < n, then

that for 0 < j <mn,

f:Q—=A

n(v;;a)

2

j

Z—ay

(14.7.16)

D

k=m

It follows from Proposition 7.5

that ¢ is a Mobius transformation.
theorem.

equivalences

zeT(W)

be

(G1,71)

But according to Proposition 14.1.1,
G = C and h(z) = az + b for complex
numbers a and b with a # 0.
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that h(z) = az + b for
complex numbers a and b
with a # 0.

dentoed

Imz=ImM 1M(z) <

c,d €7}

G

an

no common divisor,

there is an odd integer

d such that b and d have no
common divisor and there
is an odd integer a

a neighborhood of z; and

First A
Proposition 2.1
F|B

w in B
continuation
continuation and
(Gna AO)?

path v

7z in At
neighborhood of «y

g(ap) and
continuation

that g.(A)
continuation and
Since hg € F, F # 0.
B(ao; )

the function
continuation of h ever

g (h(ao))k
the function
Thus the

appraches

fla) =0

denoted

Imz=Im MM (z) <Im M 1(2)
<Imz

c,d € 7Z and ¢, d occur in some

M in G}

g

and

no common divisor,

there is an odd integer a

an open neighborhood

of z (Verify!) and

First, A

Theorem 1.3 and Proposition 2.1
F|B

zin B

continuation along vy
continuation, ¢;(4A;) C G, and
(Gna AO) and g(A) - Ga

path 7 such that g;(A;) C G for all ¢
z (italics) in Ay
neighborhood of g that is
contained in €2

g(ap) =0 and

continuation along vy

that Ay C Q and g:(Ay)
continuation with A; C Q and
Hence hg € F and F # ().

B (Oéo; 0 )

a function

continuation of h in G

with values in D ever
g'(h(ao))r

a function

Thus (there is something
extra to do here) the
approches

fla) =a
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More substantial corrections
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13 14  Because f(0D,) is a
smooth curve,

82 20  Theorem 3.4 should also show

that if G is on the “left”

of a boundary curve ~

of GG, then () is on

the“left” of ¢(v).
136 -8 Add the following sentence as a separate paragraph.

The treatment in this section and the next are based on Duren [1983].
385 In the appropriate place, add the following reference.

P L Duren [1983], Univalent Functions, Springer-Verlag, New York.

To

The set G\ U,, D,, can be wr
countable union of compact -
U,; K;(Why?). Since f is ana
locally Lipschitz. Thus Area
for each 57 > 1. Thus



