Notes for a Third Edition

of

A COURSE IN FUNCTIONAL ANALYSIS

(Second edition, third printing)

by

John B Conway

GTM 96

This is a list of additions for my book A Course in Functional Analysis (Second Edition, Second Printing). I have a separate list of corrections for the latest printing. If a third edition ever comes into existence (an unlikely event), these additions will likely find their way into it. The following mathematicians have helped me to compile this list: R B Burckel, Pei-Yuan Wu,

I would appreciate any corrections or comments you have.

1

Page Line Comment

- 12 The proof that (b) implies (d) is too complicated. Here is an easier one. The definition of continuity implies there is a $\delta > 0$ such that $|L(h)| \leq 1$ whenever $||h|| < \delta$. Thus for any non-zero vector h, $|L(\delta h/||h||)| \leq 1$. This implies (d) with $c = 1/\delta$.
- 30 In Exercise 11, A^* is not defined until the next section.

69–70 A simpler proof of Theorem 3.1 is as follows.

Let $\{e_1, \ldots, e_d\}$ be a Hamel basis for \mathcal{X} and for each $x = \sum_j \xi_j e_j$ in \mathcal{X} , define $||x||_{\infty} = \max\{|\xi_j| : 1 \le j \le d\}$. It is easy to see that $||.||_{\infty}$ is a norm on \mathcal{X} . It will be shown that ||.|| and $||.||_{\infty}$ are equivalent.

If $f: \mathbb{F}^d \to \mathbb{R}$ is the function $f(\xi_1, \ldots, \xi_d) = \|\sum_j \xi_j e_j\|$, it is easy to show that f is continuous. Since $K \equiv \{\xi = (\xi_1, \ldots, \xi_d) \in \mathbb{F}^d : \max\{|\xi_j| : 1 \le j \le d\} = 1\}$ is a compact set, f attains its maximum and minimum values on K. Let α and β be points in K with $f(\alpha) \le f(\xi) \le f(\beta)$ for all ξ in K. If $a = f(\alpha)$ and $b = f(\beta)$, then for every $x = \sum_j \xi_j e_j$ in \mathcal{X} with $\|x\|_{\infty} = 1$, we have that $a \le \|x\| \le b$. So if x is any nonzero vector in \mathcal{X} , $a \le \|x/\|x\|_{\infty} \| \le b$, or $a\|x\|_{\infty} \le \|x\| \le b\|x\|_{\infty}$. Thus the two norms are equivalent.

82-83 Another proof that Banach limits exist. Let $\mathcal{M} = \{x \in \ell^{\infty} : \lim_{n} n^{-1} \sum_{j=1}^{n} x(j) \text{ exists }\}$. It follows that \mathcal{M} is a nonempty linear manifold in ℓ^{∞} . Define $f : \mathcal{M} \to \mathbb{F}$ by $f(x) = \lim_{n} n^{-1} \sum_{j=1}^{n} x(j)$. Clearly f is a linear functional and, almost as clearly, $\|f\| = 1$. By Corollary 6.8 there is a linear functional L on ℓ^{∞} with $\|L\| = 1$ and L(x) = f(x) for all x in \mathcal{M} .

> It is straightforward to check that L satisfies (a) and (b). The proof of (c) is as in the book. To prove (d), note that for any x in ℓ^{∞} , $n^{-1}\sum_{j=1}^{n} [x(j) - x(j+1)] = n^{-1} [x(1) - x(n+1)] \to 0$. Thus $x - x' \in \mathcal{M}$ and so L(x - x') = f(x - x') = 0.

- 92 Here is another proof that T^{-1} is not continuous. Let $\{\epsilon_i\}$ be a Hamel basis that contains the orthonormal basis $\{e_n\}$ of $\mathcal{X} = \ell^2$ and put $x_n = e_1 + \ldots + e_n$. So $||x_n||_1 = n$ and $||x_n|| = n^{1/2}$. Hence $||T^{-1}|| \ge ||x_n||_1/||x_n|| = n^{1/2}$.
- 96 -1 It suffices to assume that \mathcal{Y} is a normed space.
- 97 6-8 The argument can be simplified as follows.

If $x \in \mathcal{X}$, then $||A_n x|| \le ||A_n|| ||x|| \le M ||x||$. Letting $n \to \infty$ shows that $||Ax|| \le M ||x||$.

102 10–19 The proof of Proposition 1.11 can be simplified as follows. After defining c, let $V = \operatorname{int} A$. Note that $U \equiv b - \frac{1-t}{t}(V-a)$ is an open set containing b. Since $b \in \operatorname{cl} A$, $U \cap A \neq \emptyset$. Let $d \in U \cap A$ and put W = td + (1-t)V. Since A is convex, W is an open subset of A. Moreover the fact that $d \in U$ implies that $td \in tb - (1-t)(V-a) = tb + (1-t)a - (1-t)V = c - (1-t)V$. It follows that $c \in td + (1-t)V = W$. Hence $c \in \operatorname{int} A$.

2

Notes on GTM 96

109 8 We need that \mathcal{M} is closed so it must be shown that f is continuous. Here is a proof.

Since $f \leq q < 1$ on H, f > -1 on -H. Thus $\{x : |f(x)| < 1\}$ contains $H \cap (-H)$, an open neighborhood of 0. The linearity of f now shows that f is continuous at 0, hence everywhere.

- 171 Ex 8 Condition (b) follows from (a), so that (a) is necessary and sufficient for the boundedness of A.
- 222 Ex 1 State explicitly as part of the exercise the following. If \mathcal{A} is any Banach algebra with identity and $h : \mathcal{A} \to \mathbb{C}$ is a nonzero homomorphism, then ||h|| = 1.
- 234 -7 Proposition 1.11(e) can be extended to normal elements as follows. Since $||a^2||^2 = ||a^{*^2}a^2|| = ||(a^*a)^*(a^*a)|| = ||a^*a||^2 = ||a||^4$, we have that $||a^2|| = ||a||^2$. Now continue as in the book.
- 288 4–13 This paragraph is reproving something and can be simplified as follows. Put $\phi = \phi_e$. Observe that $A - \phi(N) \in W^*(N)$ and $[A - \phi(N)]e - 0$. Since e is a separating vector for $W^*(N)$, $A - \phi(N) = 0$.