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This is a list of additions for my book A Course in Functional Analy-
sis (Second Edition, Second Printing). I have a separate list of corrections
for the latest printing. If a third edition ever comes into existence (an un-
likely event), these additions will likely find their way into it. The following
mathematicians have helped me to compile this list: R B Burckel, Pei-Yuan
Wu,

I would appreciate any corrections or comments you have.
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Comment

The proof that (b) implies (d) is too complicated. Here is an easier one.
The definition of continuity implies there is a § > 0 such that |L(h)| <1
whenever ||h|| < . Thus for any non-zero vector h, |L(6h/||h||)| < 1. This
implies (d) with ¢ = 1/6.

In Exercise 11, A* is not defined until the next section.

A simpler proof of Theorem 3.1 is as follows.

Let {e1,...,eq} be a Hamel basis for X and for each z =}, ;e; in
X, define ||z||o = max{|§;|: 1 < j < d}. It is easy to see that ||.||~ is a
norm on X. It will be shown that ||.|| and ||.||s are equivalent.

If f:F% — Ris the function f(&1,...,&) = || > &€l it is easy to

show that f is continuous. Since K = {¢ = (£1,...,&q) € F4 : max{|¢;] :
1 <j<d} =1} is a compact set, f attains its maximum and minimun
values on K. Let a and 8 be points in K with f(«a) < f(§) < f(B) for all
{in K. If a = f(a) and b = f(0), then for every z =}, ;e; in X with
|z]lcc = 1, we have that a < ||z|] < b. So if x is any nonzero vector in X,
a < | z/||z]oo || < b, or a||z||c < ||z] < b||z]oo. Thus the two norms are
equivalent. m
Another proof that Banach limits exist.
Let M = {z € £ : lim,n~! Z;L:1 x(j) exists }. It follows that M
is a nonempty linear manifold in ¢>°. Define f : M — F by f(z) =
lim,, n~! Z?:1 x(j). Clearly f is a linear functional and, almost as clearly,
I|fll = 1. By Corollary 6.8 there is a linear functional L on ¢*° with
IIL]| =1 and L(z) = f(x) for all  in M.

It is straightforward to check that L satisfies (a) and (b). The proof
of (c) is as in the book. To prove (d), note that for any x in ¢,
n Y0 [2()) —2(i+1)] =nHz(l) —z(n+1)] — 0. Thus 2 — 2" € M
andso L(z —2') = f(z —2')=0. m
Here is another proof that 7! is not continuous.

Let {¢;} be a Hamel basis that contains the orthonormal basis {e,} of

/2 Hence

X=/(? and put ¥, = e1 + ... + €,. So ||z, =n and ||z,|| =n
IT7H 2 llzalli /2l = n'/2.

It suffices to assume that ) is a normed space.

The argument can be simplified as follows.

If z € X, then ||A,z|| < ||An|l|z|| < M||z||. Letting n — oo shows that
[Az|| < Mlx]].

The proof of Proposition 1.11 can be simplified as follows.

After defining ¢, let V = int A. Note that U = b — 1=4(V — a) is an
open set containing b. Since b € clA, UN A # (). Let d € UN A and
put W = td + (1 — t)V. Since A is convex, W is an open subset of
A. Moreover the fact that d € U implies that td € tb — (1 —t)(V —a) =
th+(1—t)a—(1—-t)V = c—(1—-t)V. It follows that ¢ € td+(1—-t)V = W.
Hence c € int A.
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We need that M is closed so it must be shown that f is continuous. Here
is a proof.

Since f <g<lon H, f>—1on —H. Thus {z : |f(z)| < 1} contains
H N (—H), an open neighborhood of 0. The linearity of f now shows that
f is continuous at 0, hence everywhere.

Condition (b) follows from (a), so that (a) is necessary and sufficient for
the boundedness of A.

State explicitly as part of the exercise the following.

If A is any Banach algebra with identity and h : A — C is a nonzero
homomorphism, then ||h|| = 1.

Proposition 1.11(e) can be extended to normal elements as follows.

Since [|a?||? = Ha*2a2|] = [[(a*a)*(a*a)| = ||a*al|®* = |la||*, we have that
la?]] = ||a]|?>. Now continue as in the book.

This paragraph is reproving something and can be simplified as follows.
Put ¢ = ¢.. Observe that A—¢(N) € W*(N) and [A — ¢(N)]e —0. Since
e is a separating vector for W*(N), A — ¢(N) = 0.



