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This is a list of additions for my book A Course in Functional Analy-
sis (Second Edition, Second Printing). I have a separate list of corrections
for the latest printing. If a third edition ever comes into existence (an un-
likely event), these additions will likely find their way into it. The following
mathematicians have helped me to compile this list: R B Burckel, Pei-Yuan
Wu,

I would appreciate any corrections or comments you have.
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Notes on GTM 96

Page Line Comment
12 The proof that (b) implies (d) is too complicated. Here is an easier one.

The definition of continuity implies there is a δ > 0 such that |L(h)| ≤ 1
whenever ‖h‖ < δ. Thus for any non-zero vector h, |L(δh/‖h‖)| ≤ 1. This
implies (d) with c = 1/δ.

30 In Exercise 11, A∗ is not defined until the next section.
69–70 A simpler proof of Theorem 3.1 is as follows.

Let {e1, . . . , ed} be a Hamel basis for X and for each x =
∑

j ξjej in
X , define ‖x‖∞ = max{|ξj | : 1 ≤ j ≤ d}. It is easy to see that ‖.‖∞ is a
norm on X . It will be shown that ‖.‖ and ‖.‖∞ are equivalent.

If f : Fd → R is the function f(ξ1, . . . , ξd) = ‖
∑

j ξjej‖, it is easy to
show that f is continuous. Since K ≡ {ξ = (ξ1, ..., ξd) ∈ Fd : max{|ξj | :
1 ≤ j ≤ d} = 1} is a compact set, f attains its maximum and minimun
values on K. Let α and β be points in K with f(α) ≤ f(ξ) ≤ f(β) for all
ξ in K. If a = f(α) and b = f(β), then for every x =

∑
j ξjej in X with

‖x‖∞ = 1, we have that a ≤ ‖x‖ ≤ b. So if x is any nonzero vector in X ,
a ≤ ‖x/‖x‖∞ ‖ ≤ b, or a‖x‖∞ ≤ ‖x‖ ≤ b‖x‖∞. Thus the two norms are
equivalent.

82–83 Another proof that Banach limits exist.
Let M = {x ∈ `∞ : limn n−1

∑n
j=1 x(j) exists }. It follows that M

is a nonempty linear manifold in `∞. Define f : M → F by f(x) =
limn n−1

∑n
j=1 x(j). Clearly f is a linear functional and, almost as clearly,

‖f‖ = 1. By Corollary 6.8 there is a linear functional L on `∞ with
‖L‖ = 1 and L(x) = f(x) for all x in M.

It is straightforward to check that L satisfies (a) and (b). The proof
of (c) is as in the book. To prove (d), note that for any x in `∞,
n−1

∑n
j=1[x(j)− x(j + 1)] = n−1[x(1)− x(n + 1)] → 0. Thus x− x′ ∈M

and so L(x− x′) = f(x− x′) = 0.
92 Here is another proof that T−1 is not continuous.

Let {εi} be a Hamel basis that contains the orthonormal basis {en} of
X= `2 and put xn = e1 + ... + en. So ‖xn‖1 = n and ‖xn‖ = n1/2. Hence
‖T−1‖ ≥ ‖xn‖1/‖xn‖ = n1/2.

96 -1 It suffices to assume that Y is a normed space.
97 6-8 The argument can be simplified as follows.

If x ∈ X , then ‖Anx‖ ≤ ‖An‖‖x‖ ≤ M‖x‖. Letting n → ∞ shows that
‖Ax‖ ≤ M‖x‖.

102 10–19 The proof of Proposition 1.11 can be simplified as follows.
After defining c, let V = intA. Note that U ≡ b − 1−t

t (V − a) is an
open set containing b. Since b ∈ cl A, U ∩ A 6= ∅. Let d ∈ U ∩ A and
put W = td + (1 − t)V . Since A is convex, W is an open subset of
A. Moreover the fact that d ∈ U implies that td ∈ tb − (1 − t)(V − a) =
tb+(1−t)a−(1−t)V = c−(1−t)V . It follows that c ∈ td+(1−t)V = W .
Hence c ∈ intA.
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Notes on GTM 96

109 8 We need that M is closed so it must be shown that f is continuous. Here
is a proof.
Since f ≤ q < 1 on H, f > −1 on −H. Thus {x : |f(x)| < 1} contains
H ∩ (−H), an open neighborhood of 0. The linearity of f now shows that
f is continuous at 0, hence everywhere.

171 Ex 8 Condition (b) follows from (a), so that (a) is necessary and sufficient for
the boundedness of A.

222 Ex 1 State explicitly as part of the exercise the following.
If A is any Banach algebra with identity and h : A → C is a nonzero
homomorphism, then ‖h‖ = 1.

234 -7 Proposition 1.11(e) can be extended to normal elements as follows.
Since ‖a2‖2 = ‖a∗2a2‖ = ‖(a∗a)∗(a∗a)‖ = ‖a∗a‖2 = ‖a‖4, we have that
‖a2‖ = ‖a‖2. Now continue as in the book.

288 4–13 This paragraph is reproving something and can be simplified as follows.
Put φ = φe. Observe that A−φ(N) ∈ W ∗(N) and [A−φ(N)]e−0. Since
e is a separating vector for W ∗(N), A− φ(N) = 0.
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