Corrections

for

A Course in Functional Analysis

GTM 96

(Second edition, third printing)

by

John B Conway George Washinton University

Last updated August 1, 2007

This is a list of corrections for my book A Course in Functional Analysis (Second Edition, Third Printing). These corrections were prepared for the fourth printing in June, 1996. I have a separate list of additions and changes that will appear in the next edition (if it ever comes to pass). I will mail this to you if you do not already have it. Write and ask for "Notes for a third edition." The following mathematicians have helped me to compile this list. R B Burckel, Keith Conrad, Nathan Feldman, Michael Gilbert, Pei-Yuan Wu.

I have a separate list of additions and changes that will appear in the next edition (if there is one). This is also available from my WWW page.

I would appreciate any further corrections or comments you have.

Notes in **boldface** are not part of the correction.

```
PageLine
                                                                                 To
                      From
                                                                                 \langle \cdot, \cdot \rangle
  4
          5
                      \langle \cdot, \rangle
  8
          -8
                      \inf\{\|\|h-k\|:
                                                                                 \inf\{\|h - k\|:
 13
                       \langle h, h_0' \rangle = \langle h, h_0' \rangle
                                                                                 \langle h, h_0 \rangle = \langle h, h'_0 \rangle
         11
 17
         -16
                      L^{2}[0,2\pi]
                                                                                 L^2_{\mathbb{C}}[0,2\pi]
 23
          7
 26
         12
                      hase
                                                                                 have
 33
          16
                      analogous
                                                                                 analogues
 60
          1
                      \tau(1) = 1, and
                                                                                 \tau(1) = 1, \langle \tau(\phi_k)x, y \rangle \rightarrow \langle \tau(\phi)x, y \rangle whenever
                                                                                 x, y \in \mathbb{H} and \{\phi_k\} is a sequence in \ell^{\infty}(\mathbb{C})
                                                                                 such that \phi_k(n) \to \phi(n) for all n and
                                                                                 \sup_{k} \|\phi_k\| < \infty, and
 65
          5
                      function
                                                                                 functions
 82
         -12
                      exits
                                                                                 exists
 88
         13
                      for al x
                                                                                 for all x
 88
         -7
                      \|(\mathbf{f}+g)|\mathcal{M}\|
                                                                                 ||(f+g)|\mathcal{M}||
 101
        -15
                      tb+t)a:
                                                                                 tb + (1-t)a:
 108
         16
                      (c) x \mapsto |f(x)|
                                                                                 (e) x \mapsto |f(x)|
                                                                                 ((f-g))_p
112
        -11
                       ((f,g))_p
                                                                                 (° B)°
127
         -14
                       (^{\circ}B^{\circ})
131
         13
                       f = x^* \in \text{ball}
                                                                                 x^* \in \text{ball}
136
        -11
                      is separasble (c)
                                                                                 is separable; (c)
142
                      propriety
                                                                                 property
         -16
                                                                                 = c^{-1} ||x||.
169
         10
                      =c||x||.
                                                                                 P Enflo
                       P Enflo
178
         -1
179
          1
                      B Beauzamy
                                                                                 B Beauzamy
195
         10
                      ||a-a_0|| \langle ||b_0||^{-1}
                                                                                 ||a - a_0|| < ||b_0||^{-1}
198
         17
                      (\beta - \alpha)(\beta - \alpha)^{-1}(\alpha - a)^{-1}
                                                                                 (\beta - \alpha)(\beta - a)^{-1}(\alpha - a)^{-1}
199
         -12
                      result
                                                                                 results
201
         10
                      \sigma(a) \subseteq \operatorname{ins} \Gamma
                                                                                 \sigma(a) \subseteq \operatorname{ins} \Gamma \subseteq G
                                                                                 \sigma(a) \subseteq \operatorname{ins} \Lambda \subseteq G
                      \sigma(a) \subseteq \operatorname{ins} \Lambda
201
         10
217 14-16
                      Can these lines be fixed, even with a strange
                      break at an equal sign or between dim and ker.
217
        -10
                      finit
                                                                                 finite
                      h_1(a^{\prime\prime}) = h_2(a^{\prime\prime})
 221
                                                                                 h_1(a^n) = h_2(a^n)
         14
238
          4
                      Label this display 2.4 – in boldface, no parentheses,
                       on the left margin.
256
        -12
                       \langle A, h, k \rangle
                                                                                 \langle A_i h, k \rangle
                      \langle A, h, k \rangle
256
         -10
                                                                                 \langle A_i h, k \rangle
257
          6
                       \langle M_{\phi_i}, f, g \rangle
                                                                                 \langle M_{\phi_i} f, g \rangle
263 12-13
                      Bad line break. Put E(\Delta) and A on the same line.
                                                                                 Lat \mathcal{A}^{(n)} \subseteq
                      Lat A^{(n)} \subset
275
        -19
283
         -4
                      bases
                                                                                 basis
306
         -4
                      g + H \perp
                                                                                 g + iH \perp
322
         -7
                      and (4.6).
                                                                                 and (4.6). Also, by (4.7.a),
                                                                                 E(\Delta)h \in \operatorname{dom} N_{\phi} \text{ if } h \in \operatorname{dom} N_{\phi}.
323
                      \rho(\phi)\rho(\psi) = \rho(\psi)\rho(\phi) = \rho(\phi\psi)
                                                                                 \rho(\phi)\rho(\psi) = \rho(\phi\psi)
          1
323
         14
                      E(\Delta)\mathcal{H} =
                                                                                 E(\Delta)\mathcal{H}\subseteq
323 -16 to -15 Delete the sentence "To facilitate ... (4.2)" and substitute the following.
                      The difficulty is that this may not be a linear subspace of \mathcal{H}. To bypass this inconvenient
                       truth we consider the operator (1 + N^*N)^{-1}. We will then use this bounded
                      positive operator and its spectral projection to give a direct sum decomposition of N
                       as the direct sum of bounded normal operators.
```

GTM 96 Corrections

```
\left[\bigcup_{n=1}^{\infty} \sigma(N_n)\right] show that \left[\bigcup_{n=1}^{\infty} \sigma(N_n)\right] is a closed subset of \sigma(N).
                       cl [\bigcup_{n=1}^{\infty} \sigma(N_n)]
show that [\bigcup_{n=1}^{\infty} \sigma(N_n)] \subseteq \sigma(N).
Theorem 4.10.
325
        -10
325
          -9
                                                                                         Theorem 4.10. In part (c) what can be said
327
          6
                                                                                         about the relationship of \rho(\psi)\rho(\phi) and \rho(\phi\psi)?
327 10
                        Delete Exercise 5 and renumber the remaining exercises.
327
         14
                        E(\Delta)\mathcal{H} =
                                                                                         E(\Delta)\mathcal{H}\subseteq
         -10
332
                        e^{-1}
                                                                                         e^{-t}
332
          -8
                                                                                         (ix)^m \left(\frac{d}{dx}\right)^n \hat{\phi}
                        (ix)^m \left(\frac{d}{dx}\right) \hat{\phi} sequences
337
          15
                                                                                         sequence
350
          14
350
          19
                        \mathcal{B}_0(\mathcal{H})
                                                                                         \mathcal{B}_0(\mathcal{H},\mathcal{H}')
                        \dim (\mathcal{M} + \mathcal{N})^{\perp} < \infty
                                                                                         \dim (\mathcal{M} + \mathcal{N})^{\perp} = \infty
354
         -15
372
          11
381
          2
                        vctor
                                                                                         vector
392
          10
                        \mathcal{X}^* 75
                                                                                         \mathcal{X}^* 74
399
                        sesquilinear form, 31
                                                                                         sesquilinear form, 31, 344
399
                        \sigma-compact, 106
                                                                                         \sigma-compact, 106, 136
399
                        spectral measure, 256,264
                                                                                         spectral measure, 256,264, 321
399
                        topologically complimentary, 11,94,122
                                                                                        topologically complimentary, 11,94,
                                                                                         122,213
```