Examples on Computing Present Value and Yield to Maturity

(Econ 121: Mishkin Chapter 4 Materials)

Instructor: Chao Wei

A Useful Formula:

\[a + a^2 + a^3 + \ldots + a^n = \frac{a - a^{n+1}}{1 - a}. \] \hfill (1)

Special Case: When \(0 < a < 1\), and \(n \to \infty\),

\[a + a^2 + a^3 + \ldots + a^\infty = \frac{a}{1 - a}. \] \hfill (2)

Example 1 Calculate the present value for the following payments:

1. $500 two years from now when the interest rate is 5%:
 \[
 PV = \frac{500}{(1 + 0.05)^2}.
 \]

2. $100 every three years for 12 years when the interest rate is 10%:
 \[
 PV = 100 \left(1 + \frac{1}{1.1}\right) + 100 \left(1 + \frac{1}{1.16}\right) + 100 \left(1 + \frac{1}{1.19}\right) + 100 \left(1 + \frac{1}{1.112}\right)
 = 100 \left[\frac{1}{1.1^3} + \frac{1}{1.1^6} + \ldots + \frac{1}{1.1^{12}}\right].
 \]

We can apply the formula in equation (1) by recognizing that \(a = \frac{1}{1.1}\) and \(n = 4\) in this case. Applying the formula, we have

\[
PV = 100 \times \frac{\frac{1}{1.1^3} - \left[\frac{1}{1.1^3}\right]^{4+1}}{1 - \frac{1}{1.1^3}} = 205.85.
\]

3. $100 every three years for 12 years when the interest rate is 10%, plus $50 bonus at the end of 12 years.
 \[
 PV = \frac{100}{(1 + 0.1)^3} + \frac{100}{(1 + 0.1)^6} + \frac{100}{(1 + 0.1)^9} + \frac{100}{(1 + 0.1)^{12}} + \frac{50}{(1 + 0.1)^{12}}
 = 221.78
 \]

Example 2 Suppose you buy a $1000 face-value coupon bond with a coupon rate of 10%, a maturity of 4 years,
1. Suppose you purchase the bond at a price of $1000, what is the yield to maturity?

First write down the formula for yield to maturity:

\[1000 = \frac{1000 \times 10\%}{1 + i} + \frac{1000 \times 10\%}{(1 + i)^2} + \frac{1000 \times 10\%}{(1 + i)^3} + \frac{1000 \times 10\%}{(1 + i)^4} + \frac{1000}{(1 + i)^4} \]

\[\Rightarrow i = 10\% \]

2. Suppose the purchase price is $800, what is the yield to maturity?

\[800 = \frac{1000 \times 10\%}{1 + i} + \frac{1000 \times 10\%}{(1 + i)^2} + \frac{1000 \times 10\%}{(1 + i)^3} + \frac{1000 \times 10\%}{(1 + i)^4} + \frac{1000}{(1 + i)^4} \]

\[\Rightarrow i = 17.34\% \]

3. Suppose the purchase price is $1200, what is the yield to maturity?

\[1200 = \frac{1000 \times 10\%}{1 + i} + \frac{1000 \times 10\%}{(1 + i)^2} + \frac{1000 \times 10\%}{(1 + i)^3} + \frac{1000 \times 10\%}{(1 + i)^4} + \frac{1000}{(1 + i)^4} \]

\[\Rightarrow i = 4.43\% \]